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The LLM revolution
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Large Language Models (LLM) are increasingly
being deployed to solve complex SE tasks!
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# | Model pass@l
1 W GPT-4 (May_2023) 88.4
2 % GPT-4-Turbo (Nov 2023). 85.4
3 ¥ claude-3-opus (Mar 2024). 82.9
4 DeepSeek-Coder-33B-instruct 81.1
5 WizardCoder-33B-V1.1 79.9
6 OpenCodelnterpreter-DS-33B 4+ € 79.3
7 OpenCodelnterpreter-DS-6.7B .4+ €@ 77 .4
3 speechless-codellama-34B-v2.0.4 @ 77 .4
9 GPT-3.5-Turbo (Nov 2023) 76.8
10 | Magicoder-S-DS-6.7B4 €@ 76.8
11 | XwinCoder-34B 75.6
12 | DeepSeek-Coder-7B-instruct-v1.5 75
13 | code-millenials-34B 74.4
14 | DeepSeek-Coder-6.7B-instruct 73.8
15 | GPT-3.5 (May_2023) 73.2

Is Your Code Generated by ChatGPT Really Correct?
Rigorous Evaluation of Large Language Models
for Code Generation
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ClassEval: A Manually-Crafted Benchmark
for Evaluating LLMs on Class-level Code Generation
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2% resources.github.com/learn/pathways/copilot/essentials/essentials-of-github-copilot/

Get started with GitHub Copilot >

Industry expert insight from:

ASOS: ASOS is a destination for fashion loving 20-somethings, with more than 23M active customers
in over 200 countries worldwide. Through its leading web and app experiences, customers can shop
from close to 900 partner brands and ASOS’s selection of fashion-led own-brand labels. ASOS shares
their self-serve approach to GitHub Copilot, which empowers engineers to take advantage of its
features with minimal toil.

CARIAD, a Volkswagen Group company: CARIAD is building software to make automotive mobility
safer, more sustainable, and more comfortable in a new way. They use GitHub Copilot to boost
productivity, streamline development processes, enhance code quality, and accelerate project
timelines. This module will explore how CARIAD integrates GitHub Copilot into their daily workflows,

ensuring a seamless and efficient development experience. 90% + adoption
rate with more

Shopify: Shopify is a provider of essential internet infrastructure for commerce. Shopify makes ' than 24,000

commerce better for everyone with a platform and services that are engineered for reliability, while lines Iday

Alelivedngabetiershapping expedence far cansumers euenavhate. Shapifysheshowthell — —
engineering leaders strategically evangelized GitHub Copilot adoption internally to achieve a 90%+
adoption rate with more than 24,000 lines of code accepted everyday.




Productivity Assessment of Neural Code Completion
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quartile productivity
benefit
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75-100% _
quartile
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average of shown suggestions
users found acceptable

GitHub Copilot is behind an average of 46% of a I
developers’ code across all programming languages— |
and in Java, that number jumps to 61%. J
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When using GitHub Copilot...

Perceived Productivity
| am more productive

0% 10% 20% 30% 40% 50%

Satisfaction and Well-being*
Less frustrated when coding
More fulfilled with my job
Focus on more satisfying work

0% 10% 20% 30% 40% 50%

Efficiency and Flow*
Faster completion
Faster with repetitive tasks
More in the flow
Less time searching
Less mental effort on repetitive tasks

0% 10% 20% 30% 40% 50%

60% T0%

59%

60%

60% 70%

60% 70%

80%

74%

80%

73%

77%

80%

88%
90% 100%
90% 100%
88%
96%
87%
90% 100%

https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/ ©



GitHub Copilot Al pair programmer: Asset or Liability?

Arghavan Moradi Dakhel®, Vahid Majdinasab®, Amin Nikanjam, Foutse Khomh, Michel C. Desmar

FPolytechnigue Montreal, Monireal, Conada

Zhen Ming {Jack) Jiang

York University, Toronie, Conedo

Ahbstract

e Antomatic program synthesis i= a long-lasting dream in software engineering. Recently, a promising Deep Learning (DL)
] based solution, called Copilot, has been proposed by OpenAl and Microsoft as an industrial product. Althongh some
— studies evaluate the correctness of Copilot solutions and report its issues, more empirical evaluations are necessary to
understand how developers can benefit from it effectively. In this paper, we study the capabilities of Copilot in two
= different programming tasks: (i} generating (and reproducing} correct and efficient solutions for fundamental algorithmice
problems, and (i) comparing Copilot's proposed solutions with those of human programmers on a set of programming
< tasks. For the former, we assess the performance and functionality of Copilot in solving selected fundamental problems
=f in computer science, like sorting and implementing data structures. In the latter, a dataset of programming problems
= with human-provided solutions is used. The results show that Copilot is capable of providing solutions for almost all
fundamental algorithmic problems, however, some solutions are buggy and non-reproducible. Moreover, Caopilot has
[1] some difficulties in combining multiple methods to generate a solution. Comparing Copilot to humans, our results show
o/ that the correct ratio of humans' solutions is greater than Copilot's suggestions, while the bugey solutions generated
e by Copilot require less effort to be repaired. Based on our findings, if Copilot is used by expert developers in software
¢ projects, it can become an asset sin suggestions could be comparable to humans' contributions in terms of quality.
——However, Copilot can become a liability if it is used by novice developers who may fail to filter its buggy or non-optimal
solutions due to a lack of expertise.

[y
: Keywords: Code Completion, Language Model, GitHub Copilot, Testing.
L]
o

1. Introduction formal models [15, 27] to Evolutionary Algorithms [43] and
machine-learned translation [42).

Recent breakthroughs in Deep Learning (DL), in par- Nowvel Large Langnage Models (LLMs) with the trans-
ticular the Transfarmer architecture, have revived the Soft- g0 0r architecture recent v achieved good performance
ware Engineering (SE) decades-long dream of automating in automatic program synthesis [6, 8, 9, 20|. One such

code generation that can speed up programming activi-  padel is Codex [8]: a GPT-3 [6] based language model

arXiv:2206.15

ties. Program generation aims to deliver a program that
meets a user's intentions in the form of input-output ex-
amples, natural langnage descriptions, or partial programs
[2, 33, 25).

Program synthesis is useful for diferent purposes such
as teaching, programmer assistance, or the discovery of
new algorithmic solutions for a problem [25]. One finds
different approaches to antomatic code generation in the
literature, from natural language programming [35] and

* Corresponding authors. Both authors contributed equally to this
research.
Email addresses: {arghavan . moradi-dakhel,
wahid .majdinasab, amin nikanjam, foutse. khomh,
michel .desmaraisHipolymtl.ca (Amin Nikanjam, Foutse Khomh,
Michel . Desmarais), znjiangécse yorin.ca (Zhen Ming {JTack)
Jiang)

Preprint submifted to Journal af Software and System

with up to 12 billion parameters which has been pretrained
on 159 GB of code samples from 54 million GitHub reposi-
tories. Codex shows a good performance in solving a set of
hand-written programming problems (i.e., not in the train-
ing dataset) using Python, named HomanEval dataset [].
This dataset includes simple programming problems with
test cases to as the functional correctness of codes. A
production version of Codex is available as an extension on

the Visual Studio Code development environment, named
GitHub Copilot!. Copilot, as an “Al pair programmer”,
can generate code in different programming languages when
provided with some context (called prompt), such as com-
ments, methods names, or swrrounding code.

Several studies focus on the correctness of codes sug-

'https:/fcopilot . github. conf

April 18, 2023

RQ1: Correctness, Reproducibility and Optimality on
fundamental algorithmic problems

Sorting BST Graph Greedy Algo.

o 8
- N NN

RQ2: Competitive with human solutions in different
aspects

10



E Methodology

ALGORITHMS
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~ Algorithmic
Problems [9]

Prompt
Engineering

GitHub
Copilot
F 3
Assighments
Python v
Programming
Course
Students

»—

Recommened
Solution

N

[ ]

def search(x. seq):

If X <= seq[i]:
return i
return len(seq)

{ Evaluation

¥
-

A

h

for i in range(len(seq)):

k.

r

[ Evaluation

A

b

Students'
Submissions

IEY.

Solution Found

¥

Correct Solution
Found

Optimize Solution
Found

h 4

f Reproduced Correct
solution

¥

——» Same Day

Ratio of Correct ‘
Solutions

Q Repairing Cost of ‘

Buggy Solutions

Repairing
Tool

Diversity of Correct
Solutions

Quality of Solutions ‘

» After 30 Days
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&l ROt: Fundamental Mgorithmic Problems

| o

Sorting BST Graph Greedy Algo.
— -
 —
-] e
i N N N
]
8 different sorting L
algorithm from easy Find min arT mgx, Simple Graph DAG,
to hard walks and finding BES and DFS
successor node class
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Zs RO Prompt Engineering
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ALGORITHMS

-

’ q

dh

Summarized and cross-
checked with coding J

websites

-l
-l
-l
-l
b= =
—°

A

Kappa Agreement

|
g%

<

Conflicts

v" Correct
v" Understandable by Human

v" Covers all required details
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RQI: Generate Solutions

ALGORITHMS

Prompt
Engineering

Algorithmic
Problems

GitHub
Copilot

-

Recommened
Solution

3 different
attempts

s

def search(x, seq):
for i in range(len(seq)):

30 Days

if x <= seq[i:
return i
return len(seq)

|eldL pu¢

)
3 different
attempts

14



l~* RO: Evaluation-|

®
o Response Received

100%
90%

& functional Correctness 70%

50%

@ Optimality 30%

20%
10%

1st Trial 2nd Trial 1st Trial 2nd Trial 1st Trial 2nd Trial

LN

"" Successful Generation Correctness Optimality
H Sorting Binary Search Tree = Elementary Graph Greedy Algo.
o
93%

Kappa Agreement




l~* RO: Evaluation-Il

.ié Reproducibility of Correct Solutions

90%

80%
70%
60%
50%
40%
30%
20%
10%

0%

1st Trial 2nd Trial

100%

X

X

X

X

X

X

Reproducable

H Sorting  Binary Search Tree m Elementary Graph m Greedy Algo.

(?)[]iversity of Solutions (inter/intra Trial(s))

o é6— r1
---ﬁ---

AST AST

100%
90%
80%
70%
60%
50%
40%

30%

20%
10%
0% [

inter_1st Trial inter_2nd Trial intra_Trials
Diversity

H Sorting Binary Search Tree 1 Elementary Graph Greedy Algo.
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Copilot

h

Assignments

S, ceomee

Python
Programming
Course

r

7

Students

Recommened
Solution

—

def search(x, seq):

foriin range(len(seq))‘

if x <= seq[i]:
return i
return len(seq)

1
: 5 different attempts and
' collect Top10 suggestions

Submissions

_’@!nts'

|
2442
Correct

v

Down-sampling to the same
size as Copilot solutions

1783
Buggy

5 Python

Tasks



|~* RA2: Evaluation-Correct Ratio (pass

Normalized pass@Topk

2 Topk)

Copilot Students
Task CR@Topl CR@Tops CRGQToplO CR
...”solve the problem by implementing 3 ql Sequential Search 0.6 0.44 0.36 0.57
different functions”... <—— g2 Unique Dates Months 0.00 0.00 0.00 0.40 _
g3 Duplicate Elimination 1 0.72 0.56 0.64
.”put the older people at top of the list”.. +— g4 Sorting Tuples 0.00 0.08 [}.14 0.54 _
q5 Top-k Elements 1 0.92 0.76 0.79
Total 0.52 0.43 0.35 ( 0.59 )
1.0 1 g
0.8
0.8 1
T T 1:0.42
0.6 0:0.33
0.6 1 b T p:0.44
@ 0:0.27
” 1:0.36
0.4 4 Y 04+ g:0.24
£ :0.32 1:0.28
L) 0:0.28 g:0.21
0.2 1 /_,.. 0.2 4
0.04 & & & o o ) @ | i
T T T T T T T T T T 0.0 1 J— J—
Topl Top2 Top3 Top4 Top5d Topé Top7 Top8& Top9 ToplDd : : T T T
Set of solutions @ Topk in 5 different attempts (atp) atpl atp2 atp3 atp4 atp5

Set of Solutions in 5 different attempts (atp)

18



|~~ RO2: Evaluation-Repairing Cost of Buggy Solutions

\ AST

Refactory — 90.8%

»
»

e\

|
.
Repairing Rate

Rt Repair Rate

@

—=— Avg. Repair Time (sec)

—— Relative Patch Size (RPS)

Copilot Students
Task Rep AvgRep Aye Rep Avg Rep Avg
Rate Time(sec) rps Rate Time RPS
ql sequential search 0.94 9.61 0.48  0.98 2.58 0.40
g2 unique dates months (.92 3.26 0.28  0.82 3.81 0.44
q3 duplicate elimination 0.91 0.64 0.26  0.96 4.35 0.30
g4 sorting tuples 1.00 0.78 0.15 0.85 8.82 0.29
q5 top-k elements 1.00 10.40 0.50  0.85 12.84 0.30
Total 0.95 4.94 0.33 0.89 6.48 0.35
\ )
|
sy

19



|~ RO2: Evaluation-Diversity of Solutions-|

test_ TC_Copilot.py test_ codepy 3 ® delta D~ [0

test_codepy > ... Synthesizing 18/1@ solutions (Duplicates hidden

"""Write a function that takes in a list and re
a new list with all repeated occurrences of any

- remove_duplicates(lst):
remove_duplicates(1lst):

"""Remove duplicates from a list."""
new_lst = []
Foes 18an i st:
F i not in new_1st:
new_lst.append(i)

Accept Solution
f remove_duplicates(lst):
"""Remove duplicates from a list."""
new_list = []
i in 1lst:
- i not in new_list:
new_list.append(i)
new_list

remove_duplicates(lst):
"""Remove duplicates from a list."""
new_lst = []

~ item in lst:

In5 Col1 Spaces:4 UTF-8 CRLF Python 3.80(env-01:conda) & & [




[~ RO2: Evaluation-Diversity of Solutions-|| -

The novelty of Copilot in solving the same problem compared to students ™ = ﬁ .-
AST AST

ql:Sequential Search q2:Unique Dates Months q3:Duplicate Elimination
s 4| | = Al | = e ?
[ 29 ] | — ]
= NDB _Z_ 74 1 NDB Z 74 1 NDB 74
Capilot — ° ’4 _/ Copilot 7 74 18 }’/ Copilot 7] 2 | ,{
2 student - )Z _/ 3z ? # student - /y/ 7Z # student o ﬁ/ 4
_Z = 74 | Z_ 13 § 7 }/ /W/ 18 | i /
. [ 2 § b
714 / 17 7Z B Zz Z 50 74 Z‘ 74
N — S é N |
=5 el EE RC E R e O 4 Il I
atpl atp2 atp3 atp4 atp5 atpl atp2 atp3 arp4 atp5 atp3 atp4 atps
qd:Sorting Tuples a5:Top-k Elements
. C
_gEe ;
A
T i =1/ The novelty of students’
_7 Copilot z 12 e e e . .
§ : E 4 ctudent =7 = 4 submissions is higher than
" b = that of Copilot
4 =P | 71 | O
® [ 12 2 a1
iR e -1 =Ple © |
atllll3 atlp4 atbs atbl atbz atbs atllll4 atlps

The cumulative distribution of solutions by Copilot and students. It shows the cumulative distribution of Correct (C),
None Duplicate Correct (NDC), Buggy (B) and None Duplicate Buggy (NDB) solutions for Copilot and students. Attempts (atp) for students
equals to the sampleset of randomly selection of their submission. The growth of NDC solutions for Copilot’s solutions decreases or stops for
some programming tasks while the number of its Correct (C) solutions increases. The diversity of submissions for students is greater than
Copilot’s solutions.



|~ RO2: Evaluation-Cyclomatic Complexity (C.C)

Don’t use “sort” or EEEp

“sorted”

Question C.C. Copilot | C.C. Students
Sequential Search 5.8+ 1.94 4.63+2.1
unique dates Months - 4.18 £1.03
Duplicate Elimination 3+0.01 3.12+0.5
Sorting Tuples 1+0 4.13+£1.03
Top_k Elements 1.44 4+ 0.69 3.3 +1.46
Total 3.87
sl

{4
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WP In summary

Little changes to
convert a buggy 95% Repairing
code into the Rate
correct one

Reproducible

“..older people are at the front...”
2
“...descending order...”
CR: 14% -> 79%

Despite their performance, they are not yet trustworthy!

23



We observed model's mistakes that never occurred in human codes

if not logfile.exists():
logging.basicContig(
filename=str(logf),

format="%(asctime)s %(levelname)s %(name)s %(message)s’, Repeat the same

datefmt="%Y-%m-%d %H:%M:%s",

level=logging.DEBUG,

else:
logging.basicConfig(
tilename=str(logf),

a

statement for both if and
else.

format="%(asctime)s %(levelname)s %(name)s %(message)s’,
datefmt="%y-%m-%d ZH:%M:%5",

level=logging.DEBUG,

Adding imports AFTER

the function to create. ——
Those imports have

no link to the function

to implement

import sys

from PyQt5.QtCore import QObject, QThread, pygtsignal, pyqtslot, Qurl
from PyQts5.QtWidgets import QApplication, QMainWindow, QActionGroup

import resources.icons as 1icons

from resources.logger import logger



We observed model's mistakes that never occurred in human codes

def vertex3tuple(vertices):

"""return 3 points for each vertex of the polygon. This will include the vertex and the 2 points on both sides of the

polygon with vertices ABCD

Will return

DAB, ABC, BCD, CDA -> returns 3tuples This will only work if they

SFAB O Do of vertices are 4 vertices (just as in

the provided docstring,

return [(vertices[-1], vertices[@], vertices[1]), ie. prompt). It doesn’t
work in other cases.

(vertices[@], vertices[1], vertices[2]),
(vertices[1], vertices[2], vertices[3]),

(vertices[2], vertices[3], vertices[@])]



v'Given the increasing adoption of LLMs.

v'Given that the effectiveness of popular
quality assurance techniques like
mutation testing depends on a precise
characterization of faults occurring in
the code under test.

Would existing QA techniques cope efficiently with LLM
generated code?

We believe that there is a need for a precise characterization of faults contained in LLM-generated code!

26



Noname manuscript No.
(will be inserted by the editor)

Bugs in Large Language Models Generated Code:
An Empirical Study

Florian Tambon* - Arghavan Moradi
Dakhel®* - Amin Nikanjam - Foutse
Khomh - Michel C. Desmarais -

Giuliano Antoniol
RQ1: What are the characteristics of bugs occurring in code
generated by LLMs for real-world project tasks?
Codex
@'é PanGu-Coder
HOAE RQ2: To what extent are the identified bug patterns in LLM-
5 generated code relevant for software practitioners working
i ?
CODEGEN with LLMs?

‘ < / > ‘ projects and 230 methods
=m=m=» from 10 Java projects.
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The Taxonomy

Bug Patterns in
LLM-generated
code

e

Mismterp-
retation

(20.77%)

e
-—— Eaa
The generated
code deviates
from the

intention of
the prompt.

|

Syntax
Error

6%
(&11%)

The generated
code contains
syntax errors,
such as a
missing
parenthesis or
semicolon.

|

Silly
Mistake

aS
Q 9.57% )

The
generated
code contains
issues such
as redundant
conditions or
unnecessary
casting.

|

Prompt-
biased
code
T
e 6.52 f.{ b

The generated
code is bias on
provided
examples or

particular terms

in the prompt.

|

Missing
Corner
Cases

=

<
The generated
code operates
correctly,
except for
overlooking
certain corner
CASES.

|

Wrong
Input
Type

1
C5.91%)

S e

The
generated
code contains
an incorrect
input type in a
correct
function call.

|

Hallucinated
Object

.
9.57% )
\""‘ﬂ-\_ e o

The generated
code utilizes
an object that
neither exists
nor has been
defined.

l

Wrong
Attribute

(8.55% )
T
The generated
code contains
an
incorrect/non-
existent
attribute for an

object or
module.

|

Incomplete
Generation

s
Nl
The model
generates no
code or
produces, an
empty
function such
as a pass’
statement.

|

Non-
Prompted
Consideration
(NPC)

pail b
8.15% )
b B

o S —

The generated
code contains
statements that
are unrelated
to the task
specification.
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Bug Patterns in

LLM-generated
code
,M' lt = 5 1 l Proln t- Missin Wrclmg . Non-
isinterp yntax $|Ily omp) g Hallucinated Wrong Incomplete Prompted
I Jelagot I EREE Mk biced o nput Object Attribute Generation | | Consideration
code Cases Type (NPC)
e AT D — — s e S e AT
RSN RGO RO ECCORN IRCEDRIRCDRIRCGORRCORECORINCE
I _—
The generated ~ The generated  The The generated ~ The generated The The generated  The generated 1€ madel The generated
code deviates code contains generated code is bias on  code operates generated code utilizes code contains generates no code contains
from the syntax errors, code contains provided carrectly, code contains an object that an code or statements that
intention of such as a issues such examples or except for an incorrect neither exists incorrect/non- produces, an are unrelated
the prompt missing as redundant particular terms ~ overlooking inputtypeina  norhas been existent empty to the task
parenthesis or conditions or in the prompt certain cormner comect defined attribute for an  function such  specification.
semicolon. unnecessary cases. function call. object or as a pass’

casting. module. statement.

def int_to_string(number: int, alphabet: List[str|, padding: Optional[int] = None) —> str:

R TRL]

Convert a number to a string, using the given alphabet.

The output has the most significant digit first.

nnn

ey

output =
alpha_len = len(alphabet)
while number:
number, digit = divmod(number, alpha_len)
Reference solution — output += alphabet[digit]
if padding:
remainder = max(padding — len(output), 0)
output = output + alphabet[0] * remainder
return output[:—1]
=

def int_to_string(number: int, alphabet: str) —> str:
return alphabet[number]

Solution proposed
By Pan PanGu-Coder

—




Bug Patterns in

LLM-generated
code
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The generated ~ The generated  The The generated ~ The generated The The generated  The generated 1€ madel The generated
code deviates code contains generated code is bias on  code operates generated code utilizes code contains generatesno  code contains
from the syntax errors, code contains  provided correctly, code contains  an object that an code or statements that
intention of such as a issues such examples or except for an incorrect neither exists incorrect/non- produces, an are unrelated
the prompt missing as redundant particular terms ~ overlooking inputtypeina  norhas been existent empty to the task
parenthesis or conditions or in the prompt certain cormner comect defined atiribute foran  function such  specification.
semicolon. unnecessary cases. function call. object or as a pass’
module. statement.

casting.

import socket
def is_local(host):

LRI RE

Checks if the host is the localhost

:param host: The hostname or ip
:return: True if the host is the localhost
return host in [7127.0.0.17,
"localhost”,
— socket.gethostname(),
# just in case socket.gethostname() does not work
we also try the following:
platform.node(),
socket.gethostbyaddr(socket.gethostname())[0]

Reference solution

\f

import socket
Solution proposed def ifrlfncal(host):
By COdex missed Checks if the host is the localhost
Some relevant :param host: The hostname or ip

;return: True if the host is the localhost

options

return host in [localhost’, ’127.0.0.1°, "::1’]




Bug Patterns in

LLM-generated
code
Misinterp- Syntax Silly Prompt- Missing Wrong I Hallucinated Wrong Incomplete Pr:rz:ted
retation Error Mistake biased Corner L I Object I Attribute Generation Consideration
code Cases Type (NPC)
N e — SN . = — —_— -
@ [ [Cmd | |G | | Gemmy | | G | Casmd) || Coov) | [ Comrm) | o)
[ ] _—
The generated  The generated The The generated  The generated The The generated  The generated ~ 1he model The generated
code deviates code contains generated code is bias on code operates generated code utilizes code contains generates no code contains
from the syntax errors, code contains provided carrectly, code contains an object that an code or statements that
intention of such as a issues such examples or except for an incorrect neither exists incorrect/non- produces, an are unrelated
the prompt missing as redundant particular terms ~ overlooking inputtypeina  nor has been existent empty to the task
parenthesis or conditions or in the prompt certain cormner comect defined attribute for an  function such  specification.
semicolon. unnecessary cases. function call. object or as a pass’
casting. module. statement.

Solution proposed
By Codex calls an

undefined function

“find_path_to_ glob”

def make_find_paths(find_paths):

Given a sequence of path fragments or patterns as passed to

L

——find*, transform all

path fragments into glob patterns. Pass through existing patterns untouched.

For example, given find_paths of:

1

return [find_path_to_glob(x) for x in find_paths]

'foo.txt’, 'pp:root/somedir’|
. transform that into:

’sh:#*/*foo.txt*/**’, 'pp:root/somedir’]
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code

Bug Patterns in
LLM-generated

l

Misinterp-
retation

oy,
Sty

The generated
code deviates
from the
intention of
the prompt

I

Syntax Silly Prompt- Missing
Error Mistake biased Corner
code Cases
(61_1%) (987%) < 6.52% ) (15.27% )
The generated The The generated The generated
code contains generated code is bias on  code operates
syntax errors, code contains provided carrectly,
such as a issues such examples or except for
missing as redundant particular terms  overlooking
parenthesis or conditions ar in the prompt certain corner
semicolon. unnecessary cases.
casting.

Solution proposed
By Codex sorts the list of
flags before joining them,
which is not in line with
the given prompt

l

Wrong
Input
Type

(5.91%)

W

The
generated

code contains

an incorrect

inputtypeina nor

correct
function call.

N —

Non-
Halluc_lnatecf Wrong [ncomp|ete Prompted
Object Attribute Generation Considerationl
— o o (NPC)
/ B P e T e
CGONBRCOMECION RCDE
—
The generated  The generated The model The generated
code utilizes code contains generates no code contains
an object that an code or statements that
neither exists incorrect/non- produces, an are unrelated
has been existent empty to the task
defined. attribute for an function such specification.
object or as a pass’
module. statement.

—=

def parser_flags(parser):

Given an argparse.ArgumentParser instance, return its argument flags in a space—separated
string.
flags = []
for action in parser._actions:
if isinstance(action, argparse._SubParsersAction):
for choice, subparser in action.choices.items():
flags.append(choice)
flags += parser_flags(subparser)
else:

flags.append(action.option_strings[0])

return 7 7 _.join(sorted(flags))
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§The Taxonomy

1.0

0.8 A

0.6

Distribution of Bug types in LLMs

[ CodeGen
mm Codex
PanGu-Coder

Bug Taxonomy
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QThe Taxonomy

Survey participants assessment of the bug patterns

4.0
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BN Diagnosing
g5 N Complexity - ( \ "’b ( - \
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I,
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= . .»\
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g2 I ! P D qt,al I | I
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3
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@ My '\
4 I | © m l I ol I
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5 I P
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o | I I I I I
| l I l I l
0.5
’ | l I I I l
l I l I l
l
00 Hallucinated Incomplete ksmtepret ati 10’ NPC Silly Mistake Wrong l Missing I Wrong Synthax lPromptrblased I
Object Generation Input Type = Cogrnep Cases,  Attribute Error
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Chain of Targeted Verification Questions to Improve the
Reliability of Code Generated by LLMs

@ H y oy 2
I\D Bug patterns in LLM-generated code (2) AST node Extraction
FunctionDef
def match_pubdate(node, pubdate_xpaths): /"W
Name Args Assign Return
Returns the first match in the pubdate_xpaths list / /\
L "match
R matched_pubdate = None rubdaza”
for pubdate_xpath in pubdate_xpaths: ~funcCatt.) . Vg Afiribut &S
pubdate = get_element_text(node, pubdate_xpath) i ' i ot :
if matched_pubdate is None or pubdate. strip() I= ] % : i
LLM matched_pubdate first() Name | i  Name attr 1 Name | | attr |
matched_pubdate = pubdate x : i ] "y | ) !
return matched pubdate Yget_element ? Vhobdagen | SETIRT) I'matched .,
*. text" ¢ RS PP #FPEDdRte |
Targeted Nodes:
w = Attribute -> Name: "pubdate” , attr: "strip"
[FuncCaII -> Name: "get_element_text I Attribute -> Name: "matched_pubdate" , attr: "first" }

o

Repaired code (final output)

def match_pubdate(node, pubdate_xpaths):

def get_element_text(node, xpath):

Returns the first match in the pubdate_xpaths list
match_pubdate = None
for pubdate_xpath in pubdate_xpaths:
pubdate = get_element_text(node, pubdate_xpath)
if pubdate is not None:
pubdate = pubdate . strip() # Ensure pubdate is not None before calling strip()
if match_pubdate is None or pubdate I= match_pubdate
match_pubdate = pubdate
return match_pubdate

Get text content of the element specified by the xpath
element = node find(xpath)
if element is not None:
return element.text
else:
return None

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

@:\. Repair the potential bugs with
LLM

| few-shot '
prompt

o

VQ targets "Wrong ]
Attribute"

VQ targets
"Hallucinated
Object”

(3) Targeted Verification Questions (VQ)

1. VQ targets "Wrong Attribute”

("Are there any potential attribute errors in the
code due to attribute calls? Specifically, check
for possible attribute errors related to

<Targeted Node>, <Targeted Node>, ...
- A 4

"matched_pubdate.first()" "pubdate.strip()"

[‘get_element_text"}

2.VQ targets "Hallucinated Object”

Is <Targeted Node’> function already defined
in this code? if not give an implementation.

J
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Leneration of Verification Questions

@ Bug patterns in LLM-generated code

is an “Hallucinated

Object” e I

def match_pubdate(node, pubdate_xpaths):

eturns the first match in the pubdate_xpaths list

pubdate = None
for pubdate, xpath in pubdate_xpaths:

pubdate Slget_element_text(pode, pubdate xpath)
if matched_PpubdateTs None or pubdate.strip() !=

LLM matc&ed _gut&ate._ﬁrsm:l

matched_pubdate = pubdate
%rn matched_pubdate

N J/

is a “Wrong Attribute”

(?3' AST node Extraction

FunctionDef

N\

Name Args Assign Return
"match_ /
pubdate" ',.-.l ______________________ N
|:> TuncCah., ‘[ Attribute | ' [ Attribute |
[ 1
Name Name at|tr \ + (Name | [atir e
K st e|le*nert ; : [ strip": :"matcl"ed \ :
) ;ext— T y 'pubdate 1y Th— "firagn!

+ pubdate"
_____________________

' *
.......

Targeted Nodes:

[FuncCall -> Name: "get_element_text“] { Attribute -> Name: "pubdate” , attr: "strip

Attribute -> Name: "matched pubdate”" , attr: "first"

To localize the potential bugs, the method walks
through the AST of the initial LLM-generated code and
collects features on some targeted nodes that may

trigger specific types of errors.
40



Leneration of Verification Buestions and Repair

@' Targeted Verification Questions (VQ)

1. VQ targets "Wrong Attribute”

[ Are there any potential attribute errors in the
code due to attribute calls? Specifically, check
for possible attribute errors related to

- <Targeted Node>, <Targeted Node>, ...

!

"matched_pubdate.ﬁrst()"- ( "pubdate.strip()” |

r'get_element_text“

2.VQ targets "Hallucinated Object"

s <Targéted Node’> function already defined
in this code? if not give an implementation.

@ Repair the potential bugs with

LLM

few-shot
prompt

+

p
VQ targets "Wrong
Attribute”

-
VQ targets
"Hallucinated
L Object"

'

\_

Repaired code (final output)

def match_pubdate(node, pubdate_xpaths):
Returns the first match in the pubdate_xpaths list

match_pubdate = None
for pubdate_xpath in pubdate_xpaths:
pubdate = get_element_text{node, pubdate_xpath)
if pubdate is not None:
pubdate = pubdate.strip() # Ensure pubdate is not None before calling strip()
if match_pubdate is None or pubdate 1= match_pubdate:
match_pubdate = pubdate
return match_pubdate

def get_element_text(node, xpath):
Get text content of the element specified by the xpath

element = node.find(xpath)
if element is not None:
return element.text
else:
return None /

The verification questions allowed the model to repair the wrong attribute <match_pudate.first()> and
implement the missing <get_element_text()> function.
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Evaluation

Hallucinated Object

Annoted buggy codes

,' -

-_——

- - -
- ~

malt:hed_puhdale = Mone
for pubdate_xpath in pubdate_xpaths:
pubdate = get_element_textinode, pubdate_xpalh)

Wrong Attribute f matched_pubdate iz Mone or pubdate strip() =
g matched _pubdate first():
eee — matched_pubdate = pubdate

return matched_pubdate

</>
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Evaluation

RQ1: Do the chain of VQs repair the bugs in LLM-generated code ?

RQ2: Can VQs introduce new bugs in LLM-generated code?

# of tasks # of samples (hallucinated and # of Correct codes of these
wrong attribute) tasks
36 61 54
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RQ1: Do the chain of VQs repair the bugs in LLM-generated code ?

35.75 %

Runnable cases 10.03 %

I I
| I
Attribute errors 17.3 % : 6.04 % :
I I
Name errors 15.13 % I 4.175% I
I I
Other errors 25.54 % : 22.03 % :
\ 7/

Verification questions improved the performance of LLMs !
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RQ2: Can VQs introduce new bugs in LLM-generated code?

A oS
Error types [ Average number of samples \
I I
I
Correct code to Attribute errors : 0.2% I
I I
Correct code to Name errors I 0.2% :
I I
I
Correct code to Assertion : 2% I
errors ! |
Correct code to Other errors | 3.8% II
\ - _ -

Chain of VQs may introduce some bugs in correct code !

Rephrasing the questions of chain of VQs does not introduce high variability in the results

45



DeepCodeProbe: Towards Understanding What Models Trained on Code Learn

VAHID MA]JDINASAB, Polytechnique Montreal, Canada
AMIN NIKANJAM, Polytechnique Montreal, Canada
FOUTSE KHOMH, Polytechnique Montreal, Canada

Algorithm 2 DeepCodeProbe

: procedure EXTRACTDCU(SCRIPT)

Input: SCRIPT

Output: DCU

if MODEL_INPUT_TYPE = AST then
SCRIPT_AST « ConstructAST(SCRIPT)

else if MODEL_INPUT TYPE = CFG then
SCRIPT CFG « ConstructCFG(SCRIPT)

end if

SCRIPT_DCU & TreeZTuple(SCRIPT_AST or SCRIPT_CFG)

10: return SCRIPT DCU

11: end procedure

Determine if DL models trained on code learn
programming language syntax.

e Assess if models retain syntax in latent space.
e If not, investigate alternative learned features.

» Extract DCU tuple from code
» The input code script

» The extracted DCU tuple

» If model uses ASTs

> Construct AST

» If model uses CFGs

» Construct CFG

> Convert AST/CFG to DCU tuple

12: procedure PRoBEMODEL(TRAINING_DATA, MODEL) > Probe trained model
o o o 13 Input: TRAINING DATA > Code used to train MODEL
Guidelines & Best Practices & Input: NODEL + Taned model
15 Output: PROBING_RESULTS » Probing results
1 1 1Al 1 16:  Probe « InitializeProb Initiali b
e Establish effective training strategies. e o Ptz prbe
Y I I I . 18: DCU « ExtractDCU(code) » Extract DCU tuple
I d e nt Ify common p Itfa | | S to avol d 19; model_embeddings < MODEL(code) > Get model embeddings
20: Predicted_DCU ¢ Probe(model embeddings) > Probe model
21: accuracy_d, accuracy_c, accuracy_u « Compare(DCU, Predicted_DCU) » Compare predictions
22: PROBING_RESULTS « PROBING_RESULTS U {accuracy_d, accuracy_c, accuracy_u} » Store results
23 endfor

]

4: return PROBING_RESULTS
25: end procedure
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Probing Approach

Models under study are trained on AST/CFG.

Models under study are not large.

So we annotate the AST/CFG level by level,
from left to right.

We then create a mapping from the
annotated AST/CFG which severely reduces
its size.

Our mapping is bi-directional. AST/CFG can
be re-constructed from the mapping.

We represent the mapping with a
(d, ¢, u) tuple.

c;__i___ e,__i___

o1 o7 ol ol
0.0l 05 910l 0 0L O
| |
ool ol 0ol o0l

@
I

n o

n on

(2, 3) # children of node 1.
(4, 5, 6) # children of node 2,
(7) # children of node 3,

(8, 9) # children of node 4,

1 # Label of the ''Module''
54, # Label of the

node according to the model under study,

'""FunctionDef'' node according to the model under

study,
32, # Label of the under study,

"'Expr'' node according to the model

Predicting the < d, c,u > tuple from the representations extracted from the hidden layers of the model, given a code snippet as
input, indicates that the model is capable of representing the syntax of the programming language in its latent space 47




Models Analyzed

We study 4 models, across two different tasks.

e Code Clone Detection (CCD):
o AST-NN (Encoder/Decoder)
o FuncGNN (Graph Neural Network)

e Code summarization and comment generation:
o Summarization-TF (Seg2Seq)
o CodeSumDRL (Encoder/Decoder with Attention)

o Each of the models works on AST/CFG extracted from code.

o« Each model has a different popular architecture.



RO1 - Can models retain syntax in their latent space?

Result of DeepCodeProbe’s accuracy on recovering Syntactic Information

Model Task Programming Language Accuracy-D(%) Accuracy-C(%) Accuracy-U(%)
C 8.65 8.63 8.65

AST-
ST-NN cCD Java 8.33 8.09 8.65
FuncGNN CCD Java 43.36 98.51 39.26
SummarizationTF Code Summarization Java 13.83 14.79 14.79
CodeSumDRL Code Summarization Python 41.60 33.92 28.08

e Our probe shows that FuncGNN focuses on the connections between nodes

in the CFG to detect clones.

e None of the models under study are capable of representing the full syntax

of the programming language in their latent space



RO2 - If not the syntax, then what are the models learning?

Probing for proxies

e Instead of looking for complete syntax
information, we probe for more general
information.

e Such information cannot be used to
reconstruct the AST but it is extracted
from the AST nonetheless.

e Instead of constructing a (d, c, u) tuple,

we construct a (c, u) tuple:
o  C:whether the node has any children (it is
connected to another node or not)
o  U:the general label of a node (instead of the
fine-grained label we were using)

e_i_ 0_4_

Ml L=

o o ol ol
ol o o0l ool o

| |
ool ol el ol 9l
ol ||
N

fw =

u =

¥
1 # node 1 has children.
1 # node 2 has children,
1 # node 3 has children,
® # node 8 has no children
® # node 9 has no children

[Module, FunctionDef, Expr, Arguments, ....]

Listing 2. Generated < ¢, u > tuple for the AST in Figure 2




RO2 - If not the syntax, then what are the models learning?

Result of DeepCodeProbe’s accuracy on recovering Syntactic Information

Model Task Programming Language Accuracy-C(%) Accuracy-U(%)
C 99.17 62.11

AST-NN CCD
Java 97.50 61.25
SummarizationTF Code Summarization Python 73.64 60.97
CodeSumDRL Code Summarization Python 43.21 32.03

e We observe significant increase in syntactic information recovered from the models
e Therefore, the models DO retain syntactic information from their training data.

e Even though it is not the complete syntax, the models learn abstracts of the syntax of the programming

language.
e So, for software maintenance tasks, we may not need large models.
e We do not need the models to learn the entire syntax of the programming language.
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Lessons Learned

Our probing shows that using AST of codes for training small models is beneficial:

° ]IcEven though the models do not explicitly learn the syntax, they learn an abstraction
rom it.

e Therefore, using representations that explicitly encode the syntax of code can
result in models that are smaller, less resource intensive and capable.

Statement level vs word level tokenization:

® Except for FuncGNN, each model uses some form word level tokenization for
encoding information from the ASTs.

e FuncGNN shows that statement level tokenization can be more useful in pushing
the model to focus on syntactic information.

Code clones are useful in testing the model outside of its trained task:

® As code clones are codes that are similar to each other to varying degrees, regardless
of the task the model is trained for, it should display similar performance an
encoding for similar codes.



Lessons Learned

Efficacy of Syntactical Representations: Models don't need to fully learn syntax to perform well
on software maintenance tasks.

e Models can learn syntax abstractions from syntactically valid code representations.
e Smaller, effective models can be trained using artifacts from code. o
e Benefits include reduced model size and improved efficiency without sacrificing

performance.

Tailoring Data Representations:

® AST-NN: Uses smaller sub-trees and Word2Vec for compact, effective code clone detection.
e FuncGNN: Statement-level tokenization in CFGs for detailed representation.
® SummarizationTF & CodeSumDRL: Treat code summarization as translation using ASTs for

efficient performance.

Recommendation: Use syntactic representations (AST/CFG) for training models on code.
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Lessons Learned

Enhancing Model Reliability:

Interpretability:

e Probing reveals model decision-making processes.

o Helps identify errors and refine models.

e Smaller models (RNNs, encoder-decoder, seq2seq) are computationally
efficient and interpretable.

Contrast with LLMs

e LLMs are resource-intensive, prone to hallucinations, and lack interpretability.
o Smaller models offer reliability and efficiency, making them suitable for
software maintenance tasks.
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from left to right.

We then create a mapping from the
annotated AST/CFG which severely reduces
its size.

Our mapping is bi-directional. AST/CFG can
be re-constructed from the mapping.

We represent the mapping with a
(d, ¢, u) tuple.
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Predicting the < d, c,u > tuple from the representations extracted from the hidden layers of the model, given a code snippet as
input, indicates that the model is capable of representing the syntax of the programming language in its latent space
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Verification questions improved the performance of LLMs ! 3
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