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We are entering in an Era of 
AI-assisted Software 

Engineering
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The LLM revolution



Large Language Models (LLM) are increasingly 
being deployed to solve complex SE tasks!
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90% + adoption 
rate with more 

than 24,000 
lines /day



8https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

GitHub Copilot is behind an average of 46% of a 
developers’ code across all programming languages—
and in Java, that number jumps to 61%.
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RQ1: Correctness, Reproducibility and Optimality on 
fundamental algorithmic problems

RQ2: Competitive with human solutions in different 
aspects



11

[9]

Methodology
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8 different sorting 
algorithm from easy 

to hard
Find min an max, 
walks and finding 
successor node

Simple Graph, DAG, 
BFS and DFS Activity selection 

class

20 Tasks

RQ1: Fundamental Algorithmic Problems



13

95%
Kappa Agreement

Summarized and cross-
checked with coding 
websites

 Correct
 Understandable by Human
 Covers all required details

Conflicts

RQ1: Prompt Engineering
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2nd Trial

3 different 
attempts

30 Days

3 different 
attempts

1st Trial

RQ1: Generate Solutions



15

Response Received

Functional Correctness

Optimality

93%
Kappa Agreement

90%

RQ1: Evaluation-I
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Reproducibility of Correct Solutions

AST AST
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2442 
Correct

1783 
Buggy

5 Python 
Tasks

5 different attempts and 
collect Top10 suggestions

Down-sampling to the same 
size as Copilot solutions

RQ2: Compare Copilot and Human
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…”solve the problem by implementing 3 
different functions”…

…”put the older people at top of the list”…

RQ2: Evaluation-Correct Ratio (pass@Topk)
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Refactory
AST

90.8% Repairing Rate

Repair Rate

Avg. Repair Time (sec)

Relative Patch Size (RPS)

RQ2: Evaluation-Repairing Cost of Buggy Solutions
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RQ2: Evaluation-Diversity of Solutions-I
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The novelty of Copilot in solving the same problem compared to students
AST AST

The novelty of students’ 
submissions is higher than 

that of Copilot

RQ2: Evaluation-Diversity of Solutions-II
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Don’t use “sort” or 
“sorted”

RQ2: Evaluation-Cyclomatic Complexity (C.C)
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In summary

Despite low correct 
ratio and diversity, 
generates optimal 

solutions

Reproducible

Struggling in 
understanding natural 
language utterances 
i.e., putting limit for 

variable

“...older people are at the front...”

“…descending order…”

CR: 14% -> 79%

Little changes to 
convert a buggy 

code into the 
correct one

95% Repairing 
Rate

Despite their performance, they are not yet trustworthy! 



We observed model’s mistakes that never occurred in human codes 

Repeat the same 
statement for both if and 
else.

Adding imports AFTER 
the function to create. 
Those imports have 
no link to the function 
to implement



This will only work if they 
are 4 vertices (just as in 
the provided docstring, 
i.e. prompt). It doesn’t 
work in other cases.

We observed model’s mistakes that never occurred in human codes 
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Would existing QA techniques cope efficiently with LLM 
generated code?

Given the increasing adoption of LLMs.

Given that the effectiveness of popular 
quality assurance techniques like 
mutation testing depends on a precise 
characterization of faults occurring in 
the code under test.

We believe that there is a need for a precise characterization of faults contained in LLM-generated code! 
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PanGu-Coder 

Codex

Coder Eval

RQ1: What are the characteristics of bugs occurring in code 
generated by LLMs for real-world project tasks?

RQ2: To what extent are the identified bug patterns in LLM-
generated code relevant for software practitioners working 
with LLMs?

230 functions from 43 Python 
projects and 230 methods 
from 10 Java projects.
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Methodology
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Methodology
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Methodology
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Methodology
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The Taxonomy
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Reference solution

Solution proposed 
By Pan PanGu-Coder



34

Reference solution

Solution proposed 
By Codex missed

Some relevant 
options
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Solution proposed 
By Codex calls an 

undefined function
 “find_path_to_ glob”



36

Solution proposed 
By Codex sorts the list of
flags before joining them, 
which is not in line with 

the given prompt



Distribution of Bug types in LLMs
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The Taxonomy



Survey participants assessment of the bug patterns
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The Taxonomy
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Generation of Verification Questions
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is an “Hallucinated 
Object” 

is a “Wrong Attribute” 
To localize the potential bugs, the method walks 

through the AST of the initial LLM-generated code and 
collects features on some targeted nodes that may 

trigger specific types of errors.
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Generation of Verification Questions and Repair

The verification questions allowed the model to repair the wrong attribute <match_pudate.first()> and 
implement the missing <get_element_text()> function.
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Filtering buggy codes

Hallucinated Object

Wrong Attribute

Annoted buggy codes

Evaluation
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RQ1: Do the chain of VQs repair the bugs in LLM-generated code ?

RQ2: Can VQs introduce new bugs in LLM-generated code? 

Evaluation

# of tasks # of samples (hallucinated and 
wrong attribute)

# of Correct codes of these 
tasks

36 61 54



Runnable cases 10.03 % 35.75 %

Attribute errors 17.3 % 6.04 %

Name errors 15.13 % 4.175%

Other errors 25.54 % 22.03 %
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RQ1: Do the chain of VQs repair the bugs in LLM-generated code ?

VQ

Verification questions improved the performance of LLMs !



Error types Average number of samples

Correct code to Attribute errors 0.2%

Correct code to Name errors 0.2%

Correct code to Assertion 
errors

2 %

Correct code to Other errors 3.8%
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RQ2: Can VQs introduce new bugs in LLM-generated code? 

Chain of VQs may introduce some bugs in correct code !

Rephrasing the questions of chain of VQs does not introduce high variability in the results
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Determine if DL models trained on code learn 
programming language syntax.

● Assess if models retain syntax in latent space.
● If not, investigate alternative learned features.

Guidelines & Best Practices
● Establish effective training strategies.
● Identify common pitfalls to avoid.
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● Models under study are trained on AST/CFG.
 
● Models under study are not large.

● So we annotate the AST/CFG level by level, 
from left to right.

● We then create a mapping from the 
annotated AST/CFG which severely reduces 
its size.

● Our mapping is bi-directional. AST/CFG can 
be re-constructed from the mapping.

● We represent the mapping with a 
(d, c, u) tuple.

Probing Approach

Predicting the < 𝑑𝑑, 𝑐𝑐,𝑢𝑢 > tuple from the representations extracted from the hidden layers of the model, given a code snippet as
input, indicates that the model is capable of representing the syntax of the programming language in its latent space



Models Analyzed

We study 4 models, across two different tasks.

● Code Clone Detection (CCD):
○ AST-NN (Encoder/Decoder)
○ FuncGNN (Graph Neural Network)

● Code summarization and comment generation:
○ Summarization-TF (Seq2Seq)
○ CodeSumDRL (Encoder/Decoder with Attention)

● Each of the models works on AST/CFG extracted from code.

● Each model has a different popular architecture.
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RQ1 - Can models retain syntax in their latent space?

57

● Our probe shows that FuncGNN focuses on the connections between nodes 
in the CFG to detect clones.

● None of the models under study are capable of representing the full syntax 
of the programming language in their latent space



Probing for proxies
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● Instead of looking for complete syntax 
information, we probe for more general 
information. 

● Such information cannot be used to 
reconstruct the AST but it is extracted 
from the AST nonetheless. 

● Instead of constructing a (d, c, u) tuple, 
we construct a (c, u) tuple:

○ C: whether the node has any children (it is 
connected to another node or not)

○ U: the general label of a node (instead of the 
fine-grained label we were using)

RQ2 - If not the syntax, then what are the models learning?



● We observe significant increase in syntactic information recovered from the models
● Therefore, the models DO retain syntactic information from their training data.
● Even though it is not the complete syntax, the models learn abstracts of the syntax of the programming 

language.
● So, for software maintenance tasks, we may not need large models.
● We do not need the models to learn the entire syntax of the programming language.
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RQ2 - If not the syntax, then what are the models learning?



Lessons Learned 

Our probing shows that using AST of codes for training small models is beneficial: 
● Even though the models do not explicitly learn the syntax, they learn an abstraction 

from it.
● Therefore, using representations that explicitly encode the syntax of code can 

result in models that are smaller, less resource intensive and capable.
Statement level vs word level tokenization:
● Except for FuncGNN, each model uses some form word level tokenization for 

encoding information from the ASTs.
● FuncGNN shows that statement level tokenization can be more useful in pushing 

the model to focus on syntactic information.
Code clones are useful in testing the model outside of its trained task:
● As code clones are codes that are similar to each other to varying degrees, regardless 

of the task the model is trained for, it should display similar performance and 
encoding for similar codes.
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Efficacy of Syntactical Representations: Models don't need to fully learn syntax to perform well 
on software maintenance tasks.
● Models can learn syntax abstractions from syntactically valid code representations.
● Smaller, effective models can be trained using artifacts from code.
● Benefits include reduced model size and improved efficiency without sacrificing 

performance.
Tailoring Data Representations:
● AST-NN: Uses smaller sub-trees and Word2Vec for compact, effective code clone detection.
● FuncGNN: Statement-level tokenization in CFGs for detailed representation.
● SummarizationTF & CodeSumDRL: Treat code summarization as translation using ASTs for 

efficient performance.
Recommendation: Use syntactic representations (AST/CFG) for training models on code.
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Lessons Learned 



Enhancing Model Reliability:
Interpretability:
● Probing reveals model decision-making processes.
● Helps identify errors and refine models.
● Smaller models (RNNs, encoder-decoder, seq2seq) are computationally 

efficient and interpretable.
Contrast with LLMs
● LLMs are resource-intensive, prone to hallucinations, and lack interpretability.
● Smaller models offer reliability and efficiency, making them suitable for 

software maintenance tasks.
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Lessons Learned 
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