
Towards Reliable Machine Learning Models
for Code

SoftWare Analytics
and Technologies Lab

S.W.A.T

Foutse Khomh, PhD, Ing.
foutse.khomh@polymtl.ca

@SWATLab

Trustworthy Engineering of AI Software

1

mailto:foutse.khomh@polymtl.ca

Some Team Members

2

We are entering in an Era of
AI-assisted Software

Engineering

3

4

The LLM revolution

Large Language Models (LLM) are increasingly
being deployed to solve complex SE tasks!

5

AlphaCode

Code Llama 2 PanGu-Coder 2

6

7

90% + adoption
rate with more

than 24,000
lines /day

8https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

GitHub Copilot is behind an average of 46% of a
developers’ code across all programming languages—
and in Java, that number jumps to 61%.

10

RQ1: Correctness, Reproducibility and Optimality on
fundamental algorithmic problems

RQ2: Competitive with human solutions in different
aspects

11

[9]

Methodology

12

8 different sorting
algorithm from easy

to hard
Find min an max,
walks and finding
successor node

Simple Graph, DAG,
BFS and DFS Activity selection

class

20 Tasks

RQ1: Fundamental Algorithmic Problems

13

95%
Kappa Agreement

Summarized and cross-
checked with coding
websites

 Correct
 Understandable by Human
 Covers all required details

Conflicts

RQ1: Prompt Engineering

14

2nd Trial

3 different
attempts

30 Days

3 different
attempts

1st Trial

RQ1: Generate Solutions

15

Response Received

Functional Correctness

Optimality

93%
Kappa Agreement

90%

RQ1: Evaluation-I

16

Reproducibility of Correct Solutions

AST AST

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1st Trial 2nd Trial

Reproducable

Sorting Binary Search Tree Elementary Graph Greedy Algo.

84%

Diversity of Solutions (inter/intra Trial(s))

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

inter_1st Trial inter_2nd Trial intra_Trials

Diversity

Sorting Binary Search Tree Elementary Graph Greedy Algo.

RQ1: Evaluation-II

17

2442
Correct

1783
Buggy

5 Python
Tasks

5 different attempts and
collect Top10 suggestions

Down-sampling to the same
size as Copilot solutions

RQ2: Compare Copilot and Human

18

…”solve the problem by implementing 3
different functions”…

…”put the older people at top of the list”…

RQ2: Evaluation-Correct Ratio (pass@Topk)

19

Refactory
AST

90.8% Repairing Rate

Repair Rate

Avg. Repair Time (sec)

Relative Patch Size (RPS)

RQ2: Evaluation-Repairing Cost of Buggy Solutions

20

RQ2: Evaluation-Diversity of Solutions-I

21

The novelty of Copilot in solving the same problem compared to students
AST AST

The novelty of students’
submissions is higher than

that of Copilot

RQ2: Evaluation-Diversity of Solutions-II

22

Don’t use “sort” or
“sorted”

RQ2: Evaluation-Cyclomatic Complexity (C.C)

23

In summary

Despite low correct
ratio and diversity,
generates optimal

solutions

Reproducible

Struggling in
understanding natural
language utterances
i.e., putting limit for

variable

“...older people are at the front...”

“…descending order…”

CR: 14% -> 79%

Little changes to
convert a buggy

code into the
correct one

95% Repairing
Rate

Despite their performance, they are not yet trustworthy!

We observed model’s mistakes that never occurred in human codes

Repeat the same
statement for both if and
else.

Adding imports AFTER
the function to create.
Those imports have
no link to the function
to implement

This will only work if they
are 4 vertices (just as in
the provided docstring,
i.e. prompt). It doesn’t
work in other cases.

We observed model’s mistakes that never occurred in human codes

26

Would existing QA techniques cope efficiently with LLM
generated code?

Given the increasing adoption of LLMs.

Given that the effectiveness of popular
quality assurance techniques like
mutation testing depends on a precise
characterization of faults occurring in
the code under test.

We believe that there is a need for a precise characterization of faults contained in LLM-generated code!

27

PanGu-Coder

Codex

Coder Eval

RQ1: What are the characteristics of bugs occurring in code
generated by LLMs for real-world project tasks?

RQ2: To what extent are the identified bug patterns in LLM-
generated code relevant for software practitioners working
with LLMs?

230 functions from 43 Python
projects and 230 methods
from 10 Java projects.

28

Methodology

29

Methodology

30

Methodology

31

Methodology

32

The Taxonomy

33

Reference solution

Solution proposed
By Pan PanGu-Coder

34

Reference solution

Solution proposed
By Codex missed

Some relevant
options

35

Solution proposed
By Codex calls an

undefined function
 “find_path_to_ glob”

36

Solution proposed
By Codex sorts the list of
flags before joining them,
which is not in line with

the given prompt

Distribution of Bug types in LLMs

37

The Taxonomy

Survey participants assessment of the bug patterns

38

The Taxonomy

39

Generation of Verification Questions

40

is an “Hallucinated
Object”

is a “Wrong Attribute”
To localize the potential bugs, the method walks

through the AST of the initial LLM-generated code and
collects features on some targeted nodes that may

trigger specific types of errors.

41

Generation of Verification Questions and Repair

The verification questions allowed the model to repair the wrong attribute <match_pudate.first()> and
implement the missing <get_element_text()> function.

42

Filtering buggy codes

Hallucinated Object

Wrong Attribute

Annoted buggy codes

Evaluation

43

RQ1: Do the chain of VQs repair the bugs in LLM-generated code ?

RQ2: Can VQs introduce new bugs in LLM-generated code?

Evaluation

of tasks # of samples (hallucinated and
wrong attribute)

of Correct codes of these
tasks

36 61 54

Runnable cases 10.03 % 35.75 %

Attribute errors 17.3 % 6.04 %

Name errors 15.13 % 4.175%

Other errors 25.54 % 22.03 %

44

RQ1: Do the chain of VQs repair the bugs in LLM-generated code ?

VQ

Verification questions improved the performance of LLMs !

Error types Average number of samples

Correct code to Attribute errors 0.2%

Correct code to Name errors 0.2%

Correct code to Assertion
errors

2 %

Correct code to Other errors 3.8%

45

RQ2: Can VQs introduce new bugs in LLM-generated code?

Chain of VQs may introduce some bugs in correct code !

Rephrasing the questions of chain of VQs does not introduce high variability in the results

46

Determine if DL models trained on code learn
programming language syntax.

● Assess if models retain syntax in latent space.
● If not, investigate alternative learned features.

Guidelines & Best Practices
● Establish effective training strategies.
● Identify common pitfalls to avoid.

47

● Models under study are trained on AST/CFG.

● Models under study are not large.

● So we annotate the AST/CFG level by level,
from left to right.

● We then create a mapping from the
annotated AST/CFG which severely reduces
its size.

● Our mapping is bi-directional. AST/CFG can
be re-constructed from the mapping.

● We represent the mapping with a
(d, c, u) tuple.

Probing Approach

Predicting the < 𝑑𝑑, 𝑐𝑐,𝑢𝑢 > tuple from the representations extracted from the hidden layers of the model, given a code snippet as
input, indicates that the model is capable of representing the syntax of the programming language in its latent space

Models Analyzed

We study 4 models, across two different tasks.

● Code Clone Detection (CCD):
○ AST-NN (Encoder/Decoder)
○ FuncGNN (Graph Neural Network)

● Code summarization and comment generation:
○ Summarization-TF (Seq2Seq)
○ CodeSumDRL (Encoder/Decoder with Attention)

● Each of the models works on AST/CFG extracted from code.

● Each model has a different popular architecture.

48

RQ1 - Can models retain syntax in their latent space?

57

● Our probe shows that FuncGNN focuses on the connections between nodes
in the CFG to detect clones.

● None of the models under study are capable of representing the full syntax
of the programming language in their latent space

Probing for proxies

58

● Instead of looking for complete syntax
information, we probe for more general
information.

● Such information cannot be used to
reconstruct the AST but it is extracted
from the AST nonetheless.

● Instead of constructing a (d, c, u) tuple,
we construct a (c, u) tuple:

○ C: whether the node has any children (it is
connected to another node or not)

○ U: the general label of a node (instead of the
fine-grained label we were using)

RQ2 - If not the syntax, then what are the models learning?

● We observe significant increase in syntactic information recovered from the models
● Therefore, the models DO retain syntactic information from their training data.
● Even though it is not the complete syntax, the models learn abstracts of the syntax of the programming

language.
● So, for software maintenance tasks, we may not need large models.
● We do not need the models to learn the entire syntax of the programming language.

59

RQ2 - If not the syntax, then what are the models learning?

Lessons Learned

Our probing shows that using AST of codes for training small models is beneficial:
● Even though the models do not explicitly learn the syntax, they learn an abstraction

from it.
● Therefore, using representations that explicitly encode the syntax of code can

result in models that are smaller, less resource intensive and capable.
Statement level vs word level tokenization:
● Except for FuncGNN, each model uses some form word level tokenization for

encoding information from the ASTs.
● FuncGNN shows that statement level tokenization can be more useful in pushing

the model to focus on syntactic information.
Code clones are useful in testing the model outside of its trained task:
● As code clones are codes that are similar to each other to varying degrees, regardless

of the task the model is trained for, it should display similar performance and
encoding for similar codes.

60

Efficacy of Syntactical Representations: Models don't need to fully learn syntax to perform well
on software maintenance tasks.
● Models can learn syntax abstractions from syntactically valid code representations.
● Smaller, effective models can be trained using artifacts from code.
● Benefits include reduced model size and improved efficiency without sacrificing

performance.
Tailoring Data Representations:
● AST-NN: Uses smaller sub-trees and Word2Vec for compact, effective code clone detection.
● FuncGNN: Statement-level tokenization in CFGs for detailed representation.
● SummarizationTF & CodeSumDRL: Treat code summarization as translation using ASTs for

efficient performance.
Recommendation: Use syntactic representations (AST/CFG) for training models on code.

61

Lessons Learned

Enhancing Model Reliability:
Interpretability:
● Probing reveals model decision-making processes.
● Helps identify errors and refine models.
● Smaller models (RNNs, encoder-decoder, seq2seq) are computationally

efficient and interpretable.
Contrast with LLMs
● LLMs are resource-intensive, prone to hallucinations, and lack interpretability.
● Smaller models offer reliability and efficiency, making them suitable for

software maintenance tasks.

62

Lessons Learned

63

	Towards Reliable Machine Learning Models for Code
	Some Team Members
	Slide Number 3
	Slide Number 4
	Large Language Models (LLM) are increasingly being deployed to solve complex SE tasks!
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Would existing QA techniques cope efficiently with LLM generated code?
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Distribution of Bug types in LLMs
	Survey participants assessment of the bug patterns
	Slide Number 39
	Generation of Verification Questions
	Generation of Verification Questions and Repair
	Slide Number 42
	Slide Number 43
	RQ1: Do the chain of VQs repair the bugs in LLM-generated code ?
	RQ2: Can VQs introduce new bugs in LLM-generated code?
	Slide Number 46
	Probing Approach
	Models Analyzed
	RQ1 - Can models retain syntax in their latent space?
	Probing for proxies
	Slide Number 59
	Lessons Learned
	Lessons Learned
	Lessons Learned
	Slide Number 63

