
Quantum Computing, Software
Engineering, and Artificial Intelligence

Shaukat Ali
Head of Department/Research Professor/Chief Research Scientist

Simula Research Laboratory &
Oslo Metropolitan University

Oslo, Norway
shaukat@simula.no

IPSJ/SIGSE Software Engineering Symposium (SES2024)
September 19, 2024, Yokohama, Japan

Quantum Computing (QC)

QC promises to solve many complex problems, possibly together with classical computing.

2

Superconducting
IBM
IQM
Google
Chalmers University

Quantum Annealers
D-Wave

Photonic
Xanadu
PsiQuantum
QuiX Quantum

Silicon
SemiQon
Equal 1

Trapped Ion
Quantinuum
IonQ

Neural Atom
PASQAL
Atom Computing
ColdQuanta
QuEra

Many technologies are being tried out to build quantum computers.

Irrespective of technology, we need to program quantum computers.

Currently, we program quantum computers with quantum circuits.

executes on

No abstraction!

Nothing intuitive!

QAL 9000 Quantum computer,
Chalmers/Wallenberg Centre for
Quantum Technologies, Sweden

People with specialized background can program quantum
computers.

Richard Feynman

“If you think you understand quantum mechanics, you
don't understand quantum mechanics.”

UNIVAC I
Universal Automatic Computer I

(1950’s)

q1 |0⟩

q2 |0⟩

H

+

≈

Bit vs. Qubit

0

1

Bit

Z

X

Y

⟩ȁ𝜓 = α ⟩ȁ0 + ⟩𝛽ȁ1

Qubit
⟩ȁ0

⟩ȁ1
Superposition

Classical Circuit

q1 |0⟩

q2 |0⟩

H

+

Quantum
Operations Measurement

Initialization
(assign 0/1 for

each qubit)

b1 [0]
AND

b2 [0]
0

Quantum Circuit

Initialization
(assign 0/1
for each bit)

Classical
Operations

Classical vs. Quantum Circuit

4

Quantum Circuit Execution (1/4)

5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

"00" "01" "10" "11"

P
ro

ba
bi

lit
y

Computational basis states

q1 |0⟩

q2 |0⟩

H

+

⟩ȁ00

Quantum Circuit Execution (2/4)

6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

"00" "01" "10" "11"

P
ro

ba
bi

lit
y

Computational basis states

q1 |0⟩

q2 |0⟩

H

+

⟩ȁ00 0

⟩ȁ01 0

Quantum Circuit Execution (3/4)

7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

"00" "01" "10" "11"

P
ro

ba
bi

lit
y

Computational basis states

q1 |0⟩

q2 |0⟩

H

+

⟩ȁ00 0

⟩ȁ11 0

Quantum Circuit Execution (4/4)-1st Shot

8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

"00" "01" "10" "11"

P
ro

ba
bi

lit
y

Computational basis states

q1 |0⟩

q2 |0⟩

H

+

⟩ȁ11 0

Quantum Circuit Execution (4/4)- 2nd Shot

9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

"00" "01" "10" "11"

P
ro

ba
bi

lit
y

Computational basis states

q1 |0⟩

q2 |0⟩

H

+

⟩ȁ00 0

Quantum
Computing

(QC)

Software
Engineering

(SE)

Artificial
Intelligence

(AI)

Quantum Computing for AI (QAI)
Artificial Intelligence for QC (AI4QC) Software Engineering for QC

Quantum Computing for Classical/Quantum SE

Artificial Intelligence for Classical SE
Software Engineering for Classical AIQAI for Classical/Quantum SE

AI4QC for Classical/Quantum SE

10

Software EngineeringArtificial Intelligence

Quantum Computing

Quantum
Computing

(QC)

Software
Engineering

(SE)

Artificial
Intelligence

(AI)

Quantum Computing for AI (QAI)
Artificial Intelligence for QC (AI4QC) Software Engineering for QC

Quantum Computing for Classical/Quantum SE

QAI for Classical/Quantum SE
AI4QC for Classical/Quantum SE

11

What is Quantum Software Engineering?

Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engineering meets quantum computing. Commun. ACM 65, 4 (April 2022), 84–88. https://doi.org/10.1145/3512340

QAL 9000 Quantum computer
Chalmers/Wallenberg Centre for
Quantum Technologies, Sweden

Quantum computers irrespective of their technology
are programmed with quantum software.

Quantum software is at the core of the promised
revolutionary QC applications.

Quantum software engineering enables cost-
effective and scalable development of dependable
quantum software.

12

Quantum Software Engineering Challenges

Murillo, Juan M., et al. "Challenges of quantum software engineering for the next decade: The road ahead." arXiv preprint arXiv:2404.06825 (2024).

Model-Driven Engineering

Need for high-level design methodologies for
hybrid software systems

Scalable quantum software maintenance and
evolution

Intelligent code generation and orchestration

Testing and Debugging

Efficient test oracles

Test scalability

From simulators to real quantum computers

Test strategies

Programming Paradigms

Complexity of circuit

Composable and reusable quantum software

Abstractions for quantum software

Software Development Process

Managing iterative development

Risk management

Project management

Do we even need quantum software requirements engineering?
13

Kristen Nygaard Ole-Johan Dahl

Norwegian Computing Center
(Norsk Regnesentral)

Object-Oriented Paradigm

Class Object …

1960’s

2024

Shaukat Ali and Tao Yue. 2023. On the Need of Quantum-Or iented Paradigm. In Proceedings of the 2nd International Workshop on Quantum Programming for Software Engineer ing
(QP4SE 2023). Association for Computing Machinery, New York, NY, USA, 17–20. https://doi.org/10.1145/3617570.3617868

We need a novel quantum-
oriented paradigm!

…

Quantum Search-based Software Testing
(Qu-SBT)

AI4QC
for

QSE

QC
SE

AI
Classical AI-based Noise Reduction for Reliable

Quantum Software Development (Q-LEAR)

15

16

Quantum Search-based Software Testing
(Qu-SBT)

AI4QC
for

QSE

QC
SE

AI

X. Wang, P. Arcaini, T. Yue, S. Ali, Generating Failing Test Suites for Quantum
Programs with Search, in 13th Symposium on Search-Based Software Engineering
(SSBSE 2021), Bar i, Ita ly, October 11-15, 2021

Quantum Software Testing Preliminaries
q1 |0⟩

q2 |0⟩

H

+
OutputsCircuit under

Test
00
01
10
11

00 (50%), 11 (50%)
00 (50%), 11 (50%)
01 (50%), 10 (50%)
01 (50%), 10 (50%)

Program Specification

● Test Case: Input (e.g., 00)
● Test Oracle

○ Wrong Output (WOO): For example, 01 output is produced by 00 input
○ Wrong Output Distribution (WOD): The observed output distribution is significantly different

from the expected distribution tested with a statistical test (e.g., Chi-squared test)

Inputs

17

Quantum Search-based Testing (Encoding)

x1Integer Encoding:

q1 |0⟩

q2 |0⟩

H

+

• m=⌈𝛽×| 𝐷𝐼 |⌉, where 𝐷𝐼 is the domain of possible valid inputs,
𝛽 is a parameter whose value can be selected

• xi ranges from 0 to 2𝑛−1, where n is the number of qubits

00
01
10
11

x2 .. xm

Inputs

0Individual: • m=2, 𝐷𝐼 is 4, 𝛽 is 0.5
• xi ranges from 0 to 3, n is 22

18

Quantum Search-based Testing (Fitness Function)

x1Individual: x2 .. xm

Execute Quantum
Circuit • Let 𝑡𝑎=[fail1,…,failm] be the assessments of m tests with WOO or

WOD test oracles; faili is boolean
• Fitness function: max: 𝑓=|{fail𝑗∈𝑡𝑎│fail𝑖=𝑡𝑟𝑢𝑒}|

1. Execute each test xi on
the circuit under test for s
shots

Test Assessment
for xi

o1

x2 xm

o2 om

x1

2. Test assessment for each
xi with WOO/WOD based on
output distribution oi

Fitness
Calculation

fail1 fail2 failm

3. Calculate the fitness of
each xi based on assessment
results

19

Key Results

Program ≡

AS 4 1

BV 5 0

CE 5 0

IQ 4 1

QR 5 0

SM 3 2

Comparison between Genetic Algorithm (GA)
and Random Search (RS)

Number of Failing Tests (NFT) of GA across 30 runs for 6 quantum
programs

GA is significantly better than RS

≡ No significant differences between GA and RS

GA outperforms RS for 87% of the
faulty quantum programs. For both simple and complex programs, QuSBT can

find maximum failing tests

20

AI4QC

QC
SE

AI
Classical AI-based Noise Reduction for Reliable

Quantum Software Development (Q-LEAR)

21

A. Muqeet, S. Ali, T. Yue, P. Arcaini, A Machine Learning-Based Error Mitigation
Approach for Reliable Software Development on IBM's Quantum Computers, in 32nd
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2024), 2024

A. Muqeet, S. Ali, T. Yue, P. Arcaini, Mitigating Noise in Quantum Software Testing
Using Machine Learning, Accepted in IEEE Transactions on Software Engineering,
2024

Context

IBM
Qiskit Runtime

Transpiled
Program

Quantum
ComputerDeveloper,

Tester, User

Quantum
Program

Noisy Result Result

Requires reliable program execution

Design and
Implementation Testing Maintenance

Quantum Software Development

Transpilation

Noise Mitigated
Result

22

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

"00" "01" "10" "11"

P
ro

ba
bi

lit
y

Computational basis states

q1 |0⟩

q2 |0⟩

H

+

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

"00" "01" "10" "11"
P

ro
ba

bi
lit

y
Computational basis states

Ideal Noisy23

Effect of Noise

Circuit Level Features
Quantum circuit properties calculated without circuit execution. These properties directly
correlate with quantum noise.

W
id

th

Depth

S
pa

ce

Time

ȁ𝑞1⟩

ȁ𝑞2⟩

ȁ𝑞𝑛⟩

𝑅𝑧(𝜃) 𝑅𝑥(𝜃) 𝑅𝑦(𝜃)

𝑅𝑥(𝜃) 𝑅𝑥(𝜃) 𝑅𝑦(𝜃)

𝑅𝑦(𝜃) 𝑅𝑧(𝜃) 𝑅𝑧(𝜃) 𝑥(𝜃)

Two Qubit Gates # One Qubit Gates

Width: Number of qubits

Depth: Number of steps
24

Quantum circuit properties derived from the output of a quantum circuit.

0.38

0.18

0.12

0.32

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

00 01 10 11

Circuit Output (Noisy)
Observed probability (Ps)

State weight [1]

Odds Ratio [2]

[1] Qraft: Reverse Your Quantum Circuit and Know the Correct Program Output. In Proceedings of the 26th ACM International Conference o n Architectural Support for Programming Languages and Operating Systems.
[2] Muqeet, A., Yue, T., Ali, S., & Arcaini, P. (2023). Mitigating Noise in Quantum Software Testing Using Machine Learning. arXiv prep rint cs.SE/2306.16992.

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑜𝑑𝑑𝑠𝑟
𝑜𝑑𝑑𝑠𝑟+1

𝑜𝑑𝑑𝑠𝑟 =
𝑃𝑠

1 − 𝑃𝑠

Odds Ratio: Quantifies the strength
of association between each output
state of two consecutive quantum
circuit executions

State weight: Number of qubits in |1⟩

Output Level Features

25

Assess the amount of noise present in the output of a quantum program after its execution.

0

0.1

0.2

0.3

0.4

00 01 10 11

Circuit Output (Noisy)

𝑓 𝑥 =

0

0.2

0.4

0.6

00 01 10 11

Circuit Output (Ideal)

0

0.2

0.4

0.6

00 01 10 11

Circuit+Inverse (Noisy)

𝑓 𝑥 =

0

0.2

0.4

0.6

0.8

1

00 01 10 11

Circuit+Inverse (Ideal)

ȁQ1⟩

ȁQ2⟩

𝐻

Circuit

𝐻

Inverse Circuit

26

Depth-Cut Error

ȁ𝑞1⟩

ȁ𝑞2⟩

ȁ𝑞𝑛⟩

𝑅𝑧(𝜃) 𝑅𝑦(𝜃) 𝑅𝑥(𝜃) 𝑅𝑦(𝜃)

𝑅𝑥(𝜃) 𝑅𝑧(𝜃) 𝑅𝑥(𝜃) 𝑅𝑦(𝜃)

𝑅𝑦(𝜃) 𝑅𝑧(𝜃) 𝑅𝑧(𝜃) 𝑥(𝜃)

Q
ub

its

Quantum Gates

S
pa

ce

Time

Noise

𝐷𝑝𝑒25% 𝐷𝑝𝑒50% 𝐷𝑝𝑒75%

27

Assesses the amount of noise present in the output of a quantum program after its execution.

27

Depth-Cut Error

𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑠 𝑆𝑡𝑤 𝑂𝑑r 𝐷𝑃𝐸25 𝐷𝑃𝐸50 𝐷𝑃𝐸75
𝐺𝑆 0.003 −0.27 0.40 0.64 0.51
𝑃𝐶 −0.44 −0.16 0.49 0.94 0.95
𝑃𝑃 −0.43 −0.19 0.63 0.88 0.89

𝑄𝐴𝑂𝐴 −0.10 −0.19 0.58 0.57 0.52
𝑅𝑇 0.61 −0.22 0.94 0.91 0.92
𝑇𝑆𝑃 −0.11 −0.20 0.70 0.59 0.62

Correlations

Relationship between Q-LEAR’s feature set and
error in circuit output due to noise.

All features show either a positive or negative correlation
with output error. DPE features have the highest
correlations.

Feature Importance

Do all features play an important role in mitigating
errors from circuit output?

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

All features show a median error increase of at least 5%. The
observed probability is the most important feature, followed
by circuit depth and two-qubit gates.

28

Results

Baseline Comparison
How effective is Q-LEAR in training ML models for error mitigation

compared with the state-of-the-art?

𝑪𝒐𝒎𝒑𝒖𝒕𝒆𝒓
𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒐𝒓 𝑹𝒆𝒂𝒍 𝑪𝒐𝒎𝒑𝒖𝒕𝒆𝒓

𝑄𝐿𝐸𝐴𝑅 𝑄𝑟𝑎𝑓𝑡 𝑄𝐿𝐸𝐴𝑅 𝑄𝑟𝑎𝑓𝑡
𝐿𝑎𝑔𝑜𝑠 𝟓𝟐. 𝟎 12.0 𝟏𝟗. 𝟎 −11.0
𝑁𝑎𝑖𝑟𝑜𝑏𝑖 𝟒𝟏. 𝟎 17.0 𝟏𝟖. 𝟎 −9.0
𝑃𝑒𝑟𝑡ℎ 𝟒𝟖. 𝟎 18.0 𝟏𝟔. 𝟎 −14.0
𝐵𝑒𝑙𝑒𝑚 23.0 48.0 6.0 12.0
𝐽𝑎𝑘𝑎𝑟𝑡𝑎 𝟓𝟑. 𝟎 24.0 𝟐𝟕. 𝟎 −17.0
𝐿𝑖𝑚𝑎 𝟒𝟒. 𝟎 17.0 𝟐𝟎. 𝟎 −15.0
𝑀𝑎𝑛𝑖𝑙𝑎 𝟑𝟗. 𝟎 37.0 𝟑𝟎. 𝟎 −26.0
𝑄𝑢𝑖𝑡𝑜 𝟒𝟗. 𝟎 28.0 𝟑𝟏. 𝟎 −19.0

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝟑𝟖. 𝟏 25.1 𝟐𝟏. 𝟎 −12.3

Compared to baseline, Q-LEAR effectively reduces output errors on
simulators and real quantum computers.

29

Results

Classical Test Optimization with Quantum Annealing
and Quantum Approximate Optimization Algorithm

QAI4
SE

QC
SE

AI
Classical Regression Testing with Quantum Extreme

Learning Machines

30

Classical Test Optimization with Quantum Annealing
and Quantum Approximate Optimization Algorithm

QAI4
SE

QC
SE

AI

X. Wang, A. Muqeet, T. Yue, S. Ali, P. Arcaini, Test Case Min imization with Quantum
Annealers, in ACM Transactions on Software Engineering and Methodology, 2024 (to
appear)

Wang, Xinyi, et al. "Guess What Quantum Computing Can Do for Test Case
Optimization." arXiv preprint arXiv:2312.15547 (2023).

31

Problem Encoding

Cost
Objectives

Effectiveness
Objectives

Quadratic unconstrained
binary optimization

(QUBO)

Ising Formulation

Optimization Objectives

Test Case

Qubit

Feature Value

Gate Angle
(QAOA)

Feature Value

Bias,
Coupler (QA)

Test Cases to Physical Qubits

Test Case Feature Values

Cost Objective: Minimize the execution time
of the selected subset of test cases

Effectiveness Objective: Maximize the code
coverage of the selected subset of test cases

Example: One test case is mapped to
one qubit.

A test case has code
coverage of 10
statements

32

Full
Test Suite

Sub-
solution0

Sub-
solution1

Sub-
solutionM-1

QA0 QA1 QAM-1
…

…

Merge

Optimal
Solution

Minor-
embedding Annealing

Programming
and

initialization
Candidate
solution

Candidate
solution

Candidate
solution

Sub-
solutionM-1

2. Minor-embedding 3. Programming, initialization,
and sampling

is a qubit.
is a coupler.

𝑡0

𝑡1𝑡2

Working Graph

𝑡1

is a qubit chain. 𝑡1

1. QUBO Construction

QUBO:
Min: 𝒪 = 𝑡𝑇𝑄𝑡

QUBO Graph

𝑡0 𝑡1

𝑡2

𝑄00 𝑄11

𝑄22
𝑄12𝑄02

𝑄01
Reformulate

SubsetM-1

𝑡𝑖∈𝑇𝑆

𝑣𝑖
𝑝ℎ

𝐿𝑝ℎ

𝑡𝑖∈𝑇𝑆

𝑣𝑖
𝑝ℎ

𝐿𝑝ℎ

𝑡𝑖∈𝑇𝑆

𝑣𝑖
𝑝ℎ

𝐿𝑝ℎ
𝒑 = {𝒑𝟎, 𝒑𝟏, … 𝒑𝒓−𝟏}

Data-
Processing

DistanceDistanceDistance

𝒪𝑖𝒪𝑖𝒪𝑝ℎ 𝒪𝑛𝑢𝑚

Weighted
-sum

Overall
objective𝒪

𝒪𝑎𝑙𝑙 𝒕 = 𝑤num 𝒪num 𝒕 + σ𝑝ℎ𝜖𝑃𝑤𝑝ℎ𝒪𝑝ℎ 𝒕
TCM Problem

instance of

Subset0

…

Bootstrap
sampling

Subset1 SubsetM-1

Test Case Minimization (TCM) with Quantum Annealing

Hybrid iterative algorithm for
solving combinatorial
optimization problems on gate-
based quantum computers

Problem Hamiltonian encodes
objective function. Mixing
Hamiltonian enables search
space exploration.

Classical optimizer to optimize
the parameters γ, 𝛽 of the two
Hamiltonian

|0⟩

|0⟩

|0⟩

|0⟩

…
𝑈𝐶 𝛾1
=

𝑒−𝑖𝛾1𝐻𝐶

𝑈𝑀 𝛽1
=

𝑒−𝑖𝛽1𝐻𝑀

… …

Classical
optimizer
Optimizati

on
min
𝛾,𝛽

⟨𝐻𝐶⟩

Variational Parameters 𝛾, 𝛽 =
(𝛾1, … , 𝛾𝑝, 𝛽1, … , 𝛽𝑝)

Initial State
Problem

Hamiltonian
Mixing

Hamiltonian
Problem

Hamiltonian
Mixing

Hamiltonian
Measurement…

𝑝 levels

𝐻

𝐻

𝐻

𝐻

𝑈𝐶 𝛾𝑝
=

𝑒−𝑖𝛾𝑝𝐻𝐶

𝑈𝑀 𝛽𝑝
=

𝑒−𝑖𝛽𝑝𝐻𝑀

34

Quantum Approximate Optimization Algorithm (QAOA)

35

-1

+1

+1

+1

-1

+1

𝒕𝟎
𝒕𝟏
𝒕𝟐
𝒕𝟑
𝒕𝟒

𝒕𝟓

-1𝒕𝒏−𝟏

……

Solution റ𝑧

𝒪𝑇𝐶𝑂(റ𝑧)

objetivesobjetivesObjetivei

fval

Randomly
assigned

Test
case

Test
case

Test
case

Step 1: Initialization

+1

+1

+1

…

+1

…

𝒕𝟎
𝒕𝟏
𝒕𝟐
…
𝒕𝒋

…

-1𝒕𝒊𝒏−𝟏

+1𝒕𝒊𝒏−𝟐

-1

𝒪𝑇𝐶𝑂(റ𝑧𝒋)
Fvalj’

impactj = fval – fvalj’

1

Flip each value, get a new
fval’, and calculate the impact

2 Sort the impact values to get a new
order of test cases
𝒕𝟑 𝒕𝟓 𝒕𝟖 𝒕𝟏𝟎 … 𝒕𝟐

Step 2: Order by Impact

…

𝒛𝟑
𝒛𝟓
𝒛𝟖
+𝟏
−𝟏
+𝟏

𝒕𝟑
𝒕𝟓
𝒕𝟖
𝒕𝟏𝟎
𝒕𝟔

𝒕𝟏𝟒

−𝟏𝒕𝟐

……

+𝟏
−𝟏
+𝟏
𝒛𝟏𝟎
𝒛𝟔
𝒛𝟏𝟒

𝒕𝟑
𝒕𝟓
𝒕𝟖
𝒕𝟏𝟎
𝒕𝟔

𝒕𝟏𝟒

−𝟏𝒕𝟐

……

+𝟏
−𝟏
+𝟏
+𝟏
−𝟏
+𝟏

𝒕𝟑
𝒕𝟓
𝒕𝟖
𝒕𝟏𝟎
𝒕𝟔

𝒕𝟏𝟒

−𝟏𝒕𝟐

……

𝑛𝑢𝑚
reached

Variational Parameters
𝛾, 𝛽 = (𝛾1,… , 𝛾𝑝, 𝛽1, … , 𝛽𝑝)

𝒪𝑇𝐶𝑂(റ𝑧)fval

Classical
Optimizer

Multiple Runs

Step 3: Optimization

� � � �

|0⟩

|0⟩
|0⟩

�

�

�

… � � � �

actSet

optimized

Optimize N test cases in actSet in each QAOA
execution

actSet

iteration +1 IGDec

Test Case Optimization with QAOA

Empirical Evaluation

● Optimization Problems: Test Case Minimization and Selection
● Datasets: (1) PaintControl and IOF/ROL from ABB Robotics

Norway; (2) GSDTSR6 from Google; (3) Orona, Spain
● Objectives (ABB, Google): (1) Minimize the number of test

cases; (2) Minimize execution time; (3) Maximize fault detection
capability

● Objectives (Orona): (1) Minimize the cost; (2) Maximize input
diversity; (3) Maximize passenger count; (4) Maximize travel
distance

36

Results

Execution: IBM’s gate-based quantum
computer simulators and real quantum
computers

Contributions: (1) A novel formulation for
test case optimization; (2) Comparison with
three baseline approaches on three
industrial datasets (ABB, Google, and
Orona)

Key Results: Better or at least the same
effectiveness as the baselines

Execution: D-Wave’s Quantum Annealers

Contributions: (1) A generic problem
formulation; (2) Employed bootstrap
sampling to decompose a large problem; (3)
Compared with three baseline approaches
on three real-world datasets (ABB Robotics,
Google)

Key Results: BootQA demonstrates similar
effectiveness with simulated annealing but
has the highest efficiency

Quantum Annealing QAOA

37

Quantum Extreme Learning Machines for
Testing Industrial Elevator Software

(QUELL)

QAI4
SE

QC
SE

AI

X. Wang, S. Ali, A. Arr ieta , P. Arcaini, M. Arratibel, Application of Quantum Extreme
Learning Machines for QoS Prediction of Elevators' Software in an Industrial Context
in 32nd ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2024), 2024

38

Orona

• Develop and maintain elevators

• Software in the loop testing, hardware

in the loop testing, etc

Elevate

• Performance analysis

• Simulation with visual display

• Building, elevator and passenger data

Elevator attributes

• Safety

• Quality of service (QoS)

• ...

Industrial Context: Orona, Spain

Study quantum machine learning in this context

Application Context

• Elevator software testing

• Classical machine

learning-based approach

𝑠0

𝑠𝑖

𝑠𝑀

𝑡

Classical Data 𝒔

Input layer Hidden layer Linear regression

…
…

…
…

𝑤1
𝑤𝑘

𝑤𝐿

Classical Extreme Learning Machines

• Feedforward neural
network

• Hidden layer: fixed and
randomly assigned
weights and biases

• Train the linear
regression model on
the output layer's weights
to predict the target value

• Classical data into the
input layer

40

𝑠0

𝑠𝑖

𝑠𝑀

𝑡

Classical Data 𝒔

Encoder Hidden layer Linear regression

…
…

…
…

𝑤1
𝑤𝑘

𝑤𝐿

𝑈𝐸(𝒔)

⟩ȁ0𝑞0

⟩ȁ0𝑞𝑖

⟩ȁ0𝑞𝐷

…
…

Determined hardware
efficient encoder

Classical to Quantum Extreme Learning Machines

Encoder

Maps classical data into
high dimensional quantum
states

41

𝑠0

𝑠𝑖

𝑠𝑀

𝑡

Classical Data 𝒔

Encoder Reservoir Linear regression

…
…

…
…

𝑤1
𝑤𝑘

𝑤𝐿

𝑈𝐸(𝒔)

⟩ȁ0𝑞0

⟩ȁ0𝑞𝑖

⟩ȁ0𝑞𝐷

…
… 𝑈𝑅

CNOT reservoir

Classical to Quantum Extreme Learning Machines

Quantum Reservoir

Processes the encoded
quantum state

42

𝑠0

𝑠𝑖

𝑠𝑀

Classical Data 𝒔

Encoder Reservoir Linear regression

…
…𝑈𝐸(𝒔)

⟩ȁ0𝑞0

⟩ȁ0𝑞𝑖

⟩ȁ0𝑞𝐷

…
…

…
… 𝑡

𝑋1

𝑌1

𝑍𝐷

…

𝑉 =

𝑡

𝑤1
𝑤2

𝑤3𝐷
…𝑈𝑅 Efficient linear regression

training with fewer
features while maintaining
good prediction quality.

Enables applications that
require predictions in real-
time

Benefits

Classical to Quantum Extreme Learning Machines
Training

Read qubits

Apply linear regression

43

Key Results and Findings

Runtime predictions during elevators’ real
operation

Integration into existing digital twins of
elevators

Evaluation with real operational data and
existing classical machine learning
techniques at Orona

QUELL with few features outperforms
QUELL with the maximum number of
features (10 in our context)

For the same prediction task in our
industrial context, QUELL outperforms
classical machine-learning approaches

Results Applications

Dealing with noise

Build new quantum encoder and reservoir
types

Future Directions

44

● Quantum software engineering (QSE) is immature; many research
opportunities exist.

● Applying quantum search and optimization in classical software
engineering (e.g., software design and development) is still being
explored.

● Many opportunities exist to speed up classical search and optimization
and AI techniques (e.g., quantum reservoir computing)

● The potential of applying classical search and optimization and AI
techniques to quantum computing, including quantum circuit design and
noise learning, is vast and promising.

● Applying quantum search and optimization to solve QSE problems is
mostly untouched.

45

Conclusions and Way Forward

	Slide 1: Quantum Computing, Software Engineering, and Artificial Intelligence
	Slide 2: Quantum Computing (QC)
	Slide 3: Currently, we program quantum computers with quantum circuits.
	Slide 4: Bit vs. Qubit
	Slide 5: Quantum Circuit Execution (1/4)
	Slide 6: Quantum Circuit Execution (2/4)
	Slide 7: Quantum Circuit Execution (3/4)
	Slide 8: Quantum Circuit Execution (4/4)-1st Shot
	Slide 9: Quantum Circuit Execution (4/4)- 2nd Shot
	Slide 10
	Slide 11
	Slide 12: What is Quantum Software Engineering?
	Slide 13: Quantum Software Engineering Challenges
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Quantum Software Testing Preliminaries
	Slide 18: Quantum Search-based Testing (Encoding)
	Slide 19: Quantum Search-based Testing (Fitness Function)
	Slide 20: Key Results
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Problem Encoding
	Slide 33: Test Case Minimization (TCM) with Quantum Annealing
	Slide 34
	Slide 35: Test Case Optimization with QAOA
	Slide 36
	Slide 37: Results
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Key Results and Findings
	Slide 45: Conclusions and Way Forward
	Slide 46: Acknowledgements

