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Quantum Computing (QC)

QC promises to solve many complex problems, possibly together with classical computing.

Many technologies are being tried out to build quantum computers.

Superconducting Quantum Annealers Photonic Silicon Trapped lon Neural Atom
IBM D-Wave Xanadu SemiQon Quantinuum  PASQAL

QM PsiQuantum Equal 1 lonQ Atom Computing
Google QuiX Quantum ColdQuanta
Chalmers University QuEra

Irrespective of technology, we need to program quantum computers.



Currently, we program quantum computers with quantum circuits.

s‘ i ' 5 ‘
No abstraction! ‘ o
QAL 9000 Quantum computer, UNIVAC |
Chalmers/Wallenberg Centre for Universal Automatic Computer |
Nothing intuitive!

Quantum Technologies, Sweden (1950’s)
People with specialized background can program quantum
computers.

“If you think you understand quantum mechanics, you
don't understand quantum mechanics.” Simula

Richard Feynman



Bit vs. Qubit
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Superposition

Classical vs. Quantum Circuit

Classical Circuit

b1 [0]

b2 [0]

Initialization Classical
(assign 0/1 Operations
for each bit)

Initialization Quantum
(assign 0/1 for Operations Measurement
each qubit) P
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Quantum Circuit Execution (1/4)
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Quantum Circuit Execution (2/4)
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Quantum Circuit Execution (3/4)
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Quantum Circuit Execution (4/4)-1st Shot
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Quantum Circuit Execution (4/4)- 2" Shot
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Quantum Computing

Quantum Computing for Al (QAI)
Artificial Intelligence for QC (Al4QC)

Software Engineering for QC
Quantum Computing for Classical/Quantum SE

Quantum
Computing
(QC)

Software
Engineering
(SE)

< > Software Engineering

Artificial Intelligence <

Artificial Intelligence for Classical SE
QA for Classical/Quantum SE < Software Engineering for Classical Al
Al4QC for Classical/Quantum SE
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Quantum Computing for Al (QAI)
Artificial Intelligence for QC (Al4QC)

Software Engineering for QC
Quantum Computing for Classical/Quantum SE

Quantum
Computing
(QC)

QAIl for Classical/Quantum SE <
Al4QC for Classical/Quantum SE
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What is Quantum Software Engineering?

Quantum computers irrespective of their technology
are programmed with quantum software.

Quantum software is at the core of the promised
revolutionary QC applications.

Quantum software engineering enables cost-
effective and scalable development of dependable
quantum software.

Chalmers/Wallenberg Centre for
Quantum Technologies, Sweden
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Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engine ering meets quantum computing. Commun. ACM 65, 4 (April 2022), 84—88. https://doi.org/10.1145/3512340



Quantum Software Engineering Challenges

Model-Driven Engineering Testing and Debugqging

Need for high-level design methodologies for Efficient test oracles
hybrid software systems

Test scalability
Scalable quantum software maintenance and

evolution From simulators to real quantum computers
Intelligent code generation and orchestration Test strategies

Programming Paradigms Software Development Process
Complexity of circuit Managing iterative development
Composable and reusable quantum software Risk management
Abstractions for quantum software Project management

Do we even need quantum software requirements engineering?

" simula

Murillo, Juan M., et al. "Challenges of quantum software engineering for the next decade: The road ahead." arXiv preprint arXiv:2404.06825 (2024).



Norwegian Computing Center

(Norsk Regnesentral)

Object-Oriented Paradigm

éc

We need a novel quantum-
Kristen Nygaard Ole-Johan Dahl Oriented paradigm!
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Shaukat Ali and Tao Yue. 2023. On the Need of Quantum-Oriented Paradigm. In Proceedings of the 2nd International Workshop on Quantum Programming for Software Engineering
(QP4SE 2023). Association for Computing Machinery, New York, NY, USA, 17-20. https://doi.org/10.1145/3617570.3617 868



Quantum Search-based Software Testing
(Qu-SBT)

Classical Al-based Noise Reduction for Reliable
Quantum Software Development (Q-LEAR)
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Quantum Search-based Software Testing
(Qu-SBT)

SE
ol w [

Al4QC
for
QSE
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X. Wang, P. Arcaini, T. Yue, S. Ali, Generating Failing Test Suites for Quantum SI ml I I a
Programs with Search, in 13th Symposium on Search-Based Software Engineering 16

(SSBSE 202 1), Bari, Italy, October 11-15, 2021
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Program Specification
e Test Case: Input (e.g., 00)
e Test Oracle

o  Wrong Output (WOO): For example, 01 output is produced by 00 input

o Wrong Output Distribution (WOD): The observed output distribution is significantly different
from the expected distribution tested with a statistical test (e.g., Chi-squared test)
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Quantum Search-based Testing (Encoding)

Teee e [ diealinGe * m=[fX%| D,;|], where D, is the domain of possible valid inputs,
9 9 B is a parameter whose value can be selected

« x ranges from 0 to 2", where n is the number of qubits

Inputs

. - m=2,D,is4, Bis 05
Individual: « xranges from 0to 3, nis 2
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Quantum Search-based Testing (Fithess Function)

Individual:

Execute Quantum
Circuit « Let ta=[faily,...,fail,] be the assessments of m tests with WOO or

lm loz l lom WOD test oracles; fail;is boolean

* Fitness function: max: f=|{fai|,~Eta| fail,=true}|

2. Test assessment for each
x; with WOO/WOD based on TeSt ASSGSS ment
output distribution o; for x;

\Lfaih \Lfailz \L \Lfailm
3. Calculate the fitness of Fitness
each x;based on assessment )
results Calculation

1. Execute each test x;on
the circuit under test for s
shots
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Key Results

Comparison between Genetic Algorithm (GA) Number of Failing Tests (NFT) of GA across 30 runs for 6 quantum

and Random Search (RS) programs
= : -

AS; AS, AS; AS, ASs BV; BV, BVs BV, BV: CE; CE, CE; CE4 CEs

NET (# failing tests)

(a) AS (b) BV (c) CE

REE

3l
IQ; IQ; IQ3 IQs IQs QR; QR, QR3 QR; QRs SM; SMp SMs SMy SMs

NFT (# failing tests)

NE'T (# failing test:

v/ GAis significantly better than RS

= No significant differences between GA and RS

(d) IQ (e) QR (f) sM

GA outperforms RS for 87% of the

faulty quantum programs. For both simple and complex programs, QuSBT can

find maximum failing tests

©
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Classical Al-based Noise Reduction for Reliable
Quantum Software Development (Q-LEAR)

A. Mugeet, S. Ali, T. Yue, P. Arcaini, A Machine Learning-Based Error Mitigation
Approach for Reliable Software Development on IBM's Quantum Computers, in 32nd
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2024), 2024

A. Mugeet, S. Ali, T. Yue, P. Arcaini, Mitigating Noise in Quantum Software Testing SI u a

Using Machine Learning, Accepted in IEEE Transactions on Software Engineering, 21
2024




Context

:0.
()
Developer,
Tester, User

Quantum Software Development

< m— I Transpiled
Program
Quantum

Program

N%Mim%@ﬁ IBM

Result Qiskit Runtime

Quantum
Computer




Effect of Noise
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Circuit Level Features

Quantum circuit properties calculated without circuit execution. These properties directly
correlate with quantum noise.

_ # Two Qubit Gates _ # One Qubit Gates
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Output Level Features

Quantum circuit properties derived from the output of a quantum circuit.

Odds Ratio: Quantifies the strength Circuit Output (Noisy)
of association between each output 0.4 0.38 Observed probability (Ps)
state of two consecutive quantum ' -’
circuit executions 0.35
0.3
Odds Ratio [2
0dds Rati odds, 0.25 [2]
s Ratio = ————
odds, ;1 0.2
Ps 0.15
odds, =
" 1-F 0.1

0.05
0

State weight: Number of qubits in |1)
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[1] Qraft: Reverse Your Quantum Circuit and Know the Cormrect Program Output. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems.
[2] Mugeet, A, Yue, T., Ali, S., & Arcaini, P. (2023). Mitigating Noise in Quantum Software Testing Using Machine Leaming. arXiv preprint cs. SE/2306.16992.



Depth-Cut Error

Assess the amount of noise present in the output of a quantum program after its execution.

Circuit Output (Noisy) Circuit Output (Ideal)

0.4 0.6
0.3 0.4
f(x) — 0.2 -
0 0.2
0 0

01 10 11

Circuit+Inverse (Ideal)

Circuit+Inverse (Noisy)

0.8
) 36 —

3
1Q2)
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Circuit

01 10 11
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Depth-Cut Error

Assesses the amount of noise present in the output of a quantum program after its execution.

_Dpezsy,  Dpesoy,  Dpeysy,

Qubits
|

$ $
|qn) Ry () g R,(6) R,(0) g x(6)

||
Quantum Gates
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Results

Correlations Feature Importance
Relationship between Q-LEAR’s feature set and Do all features play an important role in mitigating
error in circuit output due to noise. errors from circuit output?

0.003 —-0.27
PC -0.44 -0.16

PP —-043 -0.19
QA0A -0.10 —-0.19
RT 0.61 —-0.22
Tsp —-0.11 -0.20

All features show either a positive or negative correlation All features show a median error increase of at least 5%. The
with output error. DPE features have the highest observed probability is the most important feature, followed
correlations. - by circuit depth and two-qubit gates.
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Results

Baseline Comparison

How effective is Q-LEAR in training ML models for error mitigation
compared with the state-of-the-art?

Computer
Qe QLEAT

Nairobi
Perth
Belem

Jakarta

Lima

Manila

Compared to basellne, Q-LEAR effectlvely reduces output errors on
simulators and real quantum computers. .
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Classical Test Optimization with Quantum Annealing
and Quantum Approximate Optimization Algorithm

Classical Regression Testing with Quantum Extreme
Learning Machines

simula
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Classical Test Optimization with Quantum Annealing
and Quantum Approximate Optimization Algorithm

X. Wang, A. Mugeet, T. Yue, S. Ali, P. Arcaini, Test Case Minimization with Quantum

Annealers, in ACM Transactions on Software Engineering and Methodology, 2024 (to

y simula

Wang, Xinyi, et al. "Guess What Quantum Computing Can Do for Test Case
Optimization." arXiv preprint arXiv:2312.15547 (2023).




Problem Encoding

Optimization Objectives Test Cases to Physical Qubits

Quadratic unconstrained Example: One test case is mapped to
Cost binary optimization :
Objectives (QUBO)

one qubit.

1 v

Effectiveness ..............................................................................................................................................................................................................
Objectives Ising Formulation :

Test Case Feature Values
Feature Value Feature Value

A test case has code

coverage of 10

Gate Angle Bias, statements

Cost Objective: Minimize the execution time
of the selected subset of test cases

Coupler

Effectiveness Objective: Maximize the code

coverage of the selected subset of test cases M
9 L simula



Oan(®) = Woum Onum(®) + Lp,ep Wpy, Op), (8)

! instance of

1. QUBO Construction

Full
Test Suite

Data-
Processing

Bootstrap =
sampling

Subsety

p = {PoP1 - Pr-1} Distance

QUBO Graph
Qo1 Ql 1

' o : Reformulate
Q12 C T

Overall Weighted
QZ 2

objective O -sum

Minor- Pro g;alillmm g — Sub-
embedding & i

e solutiony;
initialization

Sub- Sub-

Sub-
solution, solution,

solutiony.

@ is a qubit. Candidate

— is a coupler. solution
@ is a qubit chain.

Optimal | 2. Minor-embedding I 3. Programming, initialization,
Solution

and sampling

Test Case Minimization (TCM) with Quantum Annealing simul



Quantum Approximate Optimization Algorithm (QAQOA)

Hybrid iterative algorithm for
solving combinatorial
optimization problems on gate- (V1;---eruBl""'Bp)
based quantum computers

Variational Parameters (y, 8) =

10y Ll

Classical
Problem Hamiltonian encodes |0) ﬂ- optimizer
objective  function.  Mixing .. Optimizati
Hamiltonian enables search on
% §

space exploration. miﬁn(HC)
Y,

10 T

Initial State

Problem Mixing . Problem Mixing Measurement
Classical optlmlzer to optlmlze \Harmltoman amiltonian Hamiltonian Hamiltonian |
the parameters vy, of the two |
Hamiltonian p levels
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Test Case Optimization with QAOA

Step 1: Initialization Q

Solution z

Step 3: Optimization @

Classical
Optimizer
Randoml T

assigne 10y L —El
[0)1 F|cCOl uCD - c( p) ul ) —EI | | |
BYa - =

©_Step 2: Order by Impact s |

Flip each value, get anew
val’, and calculate the impact

Orco(2))

[ z; | actSet

X X Z14
impact; = fval - fval;’ .
=N '

oSort the impact values to get anew
order of test cases

6 Jts Jto Jeso ] . |62 |

Optimize N test cases in actSet in each QAOA
execution




Empirical Evaluation

e Optimization Problems: Test Case Minimization and Selection

e Datasets: (1) PaintControl and IOF/ROL from ABB Robotics
Norway; (2) GSDTSR6 from Google; (3) Orona, Spain

e Objectives (ABB, Google): (1) Minimize the number of test
cases; (2) Minimize execution time; (3) Maximize fault detection
capability

e Objectives (Orona): (1) Minimize the cost; (2) Maximize input
diversity; (3) Maximize passenger count; (4) Maximize travel
distance

. simula



Results
Quantum Annealing

Execution: D-Wave’s Quantum Annealers

Contributions: (1) A generic problem
formulation; (2) Employed bootstrap
sampling to decompose a large problem; (3)
Compared with three baseline approaches
on three real-world datasets (ABB Robotics,
Google)

Key Results: BootQA demonstrates similar
effectiveness with simulated annealing but
has the highest efficiency

37

QAOA
Execution: IBM's gate-based quantum
computer simulators and real quantum
computers

Contributions: (1) A novel formulation for
test case optimization; (2) Comparison with
three baseline approaches on three
industrial datasets (ABB, Google, and
Orona)

Key Results: Better or at least the same
effectiveness as the baselines

simula



Quantum Extreme Learning Machines for
Testing Industrial Elevator Software

(QUELL)

rrieta, P. Arcaini, M. Arratibel, Application of Quantum Extreme o
ines for QoS Prediction of Elevators' Software in an Industrial Context SI m u a
i uropean Software Engineering Conference and Symposium on the 38

e Engineering (ESEC/FSE 2024), 2024




Industrial Context: Orona, Spain

Orona Elevator attributes

» Develop and maintain elevators « Safety

» Software in the loop testing, hardware * Quality of service (QoS)

in the loop testing, etc

Elevate

» Performance analysis Application Context

. Simulation with visual display v SIovElEr SoiEre CHlng

« Building, elevator and passenger data P sl

learning-based approach

Study quantum machine learning in this context simula




Classical Extreme Learning Machines

40

Feedforward neural
network

Classical data into the
input layer

Hidden layer: fixed and
randomly assigned
weights and biases

Train the linear
regression model on
the output layer's weights
to predict the target value

simula



Classical to Quantum Extreme Learning Machines

Classical Data s

Encoder

J \

Hidden layer

Linear regression

41

Encoder

éMaps classical data into
high dimensional quantum
~ states

Determined hardware
efficient encoder

simula



Classical to Quantum Extreme Learning Machines

Quantum Reservoir

Classical Data s

Processes the encoded
~ quantum state

Encoder Reservoir Linear regression CNOT reservoir
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Classical to Quantum Extreme Learning Machines

Training

Classical Data s Read qubits

Apply linear regression

Benefits

~ Efficient linear regression
training  with  fewer
~ features while maintaining
- good prediction quality.

Enables applications that
~ require predictions in real-

" il simula

Encoder Reservoir Linear regression



Key Results and Findings

Results

Evaluation with real operational data and
existing classical machine learning
techniques at Orona

QUELL with few features outperforms
QUELL with the maximum number of
features (10 in our context)

For the same prediction task in our
industrial context, QUELL outperforms
classical machine-learning approaches

44

Applications

Runtime predictions during elevators’ real
operation

Integration into existing digital twins of
elevators

Future Directions

Dealing with noise

Build new quantum encoder and reservoir
types

©
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Conclusions and Way Forward

e Quantum software engineering (QSE) is immature; many research
opportunities exist.

e Applying quantum search and optimization in classical software
engineering (e.g., software design and development) is still being
explored.

e Many opportunities exist to speed up classical search and optimization
and Al techniques (e.g., quantum reservoir computing)

e The potential of applying classical search and optimization and Al
techniques to quantum computing, including quantum circuit design and
noise learning, is vast and promising.

e Applying quantum search and optimization to solve QSE problems is
mostly untouched. ) simula
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