THE SCENT OF DESIGN SMELLS

SHOULD DEVELOPERS CARE ABOUT IT?

Foutse Khomh
Associate Professor and FRQ/IVADQO Research Chair

foutse.khomh@polymtl.ca
YW @SWATLab

PUL"I’TEEHNIQUE 7 ol . TR
MONTREAL ¢

Vi 7ES EY

ff' j

WORLD-CLASS 5ol SoZ o
ENGINEERING (e By s


mailto:foutse.khomh@polymtl.ca

DESIGN DECAY




WHAT ARE DESIGN SMELLS?

‘Symptoms of poor design and implementation choices”
[Fowler, 1999




DESIGN SMELLS

- XS
e\
%goa,@(s h HOW TO WRITE GOOD CODE:
g ~| e
=0 o '
- °% Long Method
i %ﬁ Large Class
¥ £ s FAST _[CODE |
FAST
RIGHT
DCES NO
T \JORK
CODE ON\)Er?
WELL ALMOST; BUT IT5
| BECOME A MASS
A~ OF KLUDGES AND
Y00 DonESNO SPAGHETT| CODE.
YET?
Divergent Change NO. AND THE
REQUIREMENTS
Shotgun Surgery HAVE CHANGED
i |
| THROW IT ALL OUT |
"‘{ AND START OVER.




BLOB (GOD CLASS)

18 if (fNamespacesEnabled) {
n 19 fNamespacesScope.increaseDepth();
= Symptoms:
20 if (attrIndex I1= -1) {

_R1

i ing pList.getFirstAttr(attr.

-
o

" Procedural-style than object 51

32 int elemng

oriented architectures. 33 it (p

" Large controller class

-1) {

" Many fields and methods with a

gPool.equalNames(...)) |

low cohesion™

" lLack of OO design. [

S

AN

1)

*How closely the methods are related to the instance variables in the class.
Measure: LCOM (Lack of cohesion metric)



BLOB (GOD CLASS)

Lbrary_Main_Control

Do_lrwvent Y
Check_Ou _ttem(ltem)
Check _In_ltem(item)
Add_ttem(tem)
Prirt_Catalog
Sort_Cadog

sarch _(l;,‘.{’s MS)

-
"A

Issue_Library_Card
Achive_Catalogs
Calculate_Late_Fine

Cumrent_Catalog
Current_ltem
User_ |ID

Fine_Amount
Etc.

Library_Main_Control

Do_hventory
Search_Catalog( Params)
Print

Open_Library

Isaue_Library_Card
Calcdate _Late_Fine

Fine_-kn ount
Bc.

temn

Chedk_Out_ftem
Check_h_ftem
Add_Item

Dedete _tem
Edit_tem
Find_Rtem

Title
's S

Cost

Catalog

Print_Catalog
Sort_Catalog
Lst_Catabgs
fechive_Catalogs

Inventory

g

Checked _Out_kem

Chedk_In




SPECULATIVE GENERALITY

The code is created “just in case” to support anticipated future features that never get implemented



ANTIPATTERNS AND CODE SMELLS
CONIECTURED TO...

Impact program comprehension, software

evolution and maintenance activities

[t 1s iImportant to detect them early in software
development process, to reduce the

Mmalintenance costs




WHAT WE DID




HOW WE THOUGHT ABOUT IT

e e
= g s

A
e

FELL

= =
PY| .PL] H \_JJ PY| .P
.Clcool F |

LClc
(- b
| py|.rul”
L .Cjcep] .F

Source Code Source control
repositories CVS/SVN/Git



INVES TIGATING CHANGE-PRONENESS

JEeE 1G5k MIE Fapor)




RELA [ ION BETVWEEN CODE SMELLS FiSs
CHANGE-PRONENESS

An Exploratory Study of the Impact
of Code Smells on Software Change-proneness

Foutse Khomh'!, Massimiliano Di Penta?, and Yann-Gaél Guéhéneuc’

'Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
2 University of Sannio, Dept. of Engineering, Benevento, Italy

E-mails: {foutsekh, guehene }@iro.umontreal.ca, dipenta@unisannio.it

Abstract

Code smells are poor implementation choices, thought
to make object-oriented systems hard to maintain. In this
study, we investigate if classes with code smells are more
change-prone than classes without smells. Specifically, we
test the general hypothesis: classes with code smells are
not more change prone than other classes. We detect 29
code smells in 9 releases of Azureus and in 13 releases of
Eclipse, and study the relation between classes with these
code smells and class change-proneness. We show that,
in almost all releases of Azureus and Eclipse, classes with

tipatterns is, however, out of scope of this study and will be
treated in other works.

Premise. Code smells are conjectured in the literature to
hinder object-oriented software evolution. Yet, despite the
existence of many works on code smells and antipatterns,
no previous work has contrasted the change-proneness of
classes with code smells with this of other classes to study
empirically the impact of code smells on this aspect of soft-
ware evolution.

Goal. We want to investigate the relations between these
code smells and three types of code evolution phenomena.




Study Context (1/2)

®m Programs
— 9 versions of Azureus (5,858,041 LOCs)
— 13 versions of Eclipse (31,579,975 LOCs)

m Change history between each analysed

releases in the programs’ concurrent
Versions System (CVS)

| I |




Results (1/6)
Results RQ1 (Azureus)

E

F_-J'J

v w =

IéjIJ E .;‘_: =}

s S §  z

= © Kz 2z

< z B T

2 % = =

5 3 @ o

= = = S

Releases W v Z. Z p-values OR

3.1.0.0 220 1967 20 1433 < 0.01
3.1.1.0 564 1686 101 1381 < 0.01
4.0.0.0 83 2238 7 1519 < 0.01
4.0.0.2 106 2206 12 1510 < 0.01
4.0.0.4 435 1886 39 1484 < 0.01
4.1.0.0 50 2297 11 1533 < 0.01
4.1.0.2 112 2235 11 1533 < 0.01
4.1.0.4 112 2236 12 1532 < 0.01

4.2.0.0 37 2333 3 1580 < 0.01




INVESTIGATING FAULT-PRONENESS

flbe EMISE Faber)




RELATION BETWEEN ANTIPATTERNS
AND FAULT-PRONENESS

An exploratory study of the impact of antipatterns
on class change- and fault-proneness

Foutse Khomh - Massimiliano Di Penta -
Yann-Gaédl Guéhéneuc - Giluliano Antoniol

Published onbine: 6 August 2011
2 Springer Saence + Business Media, LLC 2011

Editer: Jim Whitchead

Abstract Antipatterns are poor design choices that are conjectured to make object-
onented systems harder to maintain. We investigate the impact of antipatterns on
classes in object-oriented systems by studying the relation between the presence
of antipatterns and the change- and fault-proneness of the classes. We detect 13
anupatterns in 54 releases of ArgoUML, Eclipse, Mylyn, and Rhino, and analyse (1)




ANTIPATTERNS AND FAULT-PRONENESS

Antipattern
classes have up
to 30 times more
chances to

g0 @4 0181 022 026 022 S0 S2 [ s exhibit faults

Releases

Releases

Especially true for
coupling-related

= antipatterns
S 8
O (e.g, Messa e
18 2001 20M3 11R2 1535 [5B> 16Ra [©6R6 C b ng)

Releases Releases



FAUL | -PRONENESS: WHAT ANTIPAT FERINSE

u ArgoUML M Eclipse ~ Mylyn w Rhino

| AntiSingleton

cspecially true -

for coupling- CDSEP

I”e\ated ComplexClass

: LargeClass
antipatterns

LazyClass

(e.g., Message LongMethoc

Chains)

MessageChain

RPB

0% 25% 50% Tasis 100% 125%

7% of releases where the antipattern significantly correlates with fault proneness



INVES THGA TING ENERGY-EFFICIENCY

(Lhe 15F Faber




ANTIPATTERNS AND ENERGY-EFFICIENCY

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2016 1

EARMO: An Energy-Aware Refactoring
Approach for Mobile Apps

Rodrigo Morales, Member, IEEE, Rubén Saborido, Member, IEEE, Foutse Khomh, Member, IEEE,
Francisco Chicano, and Giuliano Antoniol, Senior Member, IEEE

Abstract—The energy consumption of mobile apps is a trending topic and researchers are actively investigating the role of coding
practices on energy consumption. Recent studies suggest that design choices can conflict with energy consumption. Therefore, it is
important to take into account energy consumption when evolving the design of a mobile app. In this paper, we analyze the impact of
eight type of anti-patterns on a testbed of 20 android apps extracted from F-Droid. We propose EARMO, a novel anti-pattern correction
approach that accounts for energy consumption when refactoring mobile anti-patterns. We evaluate EARMO using three multiobjective
search-based algorithms. The obtained results show that EARMO can generate refactoring recommendations in less than a minute,
and remove a median of 84% of anti-patterns. Moreover, EARMO extended the battery life of a mobile phone by up to 29 minutes when
running in isolation a refactored multimedia app with default settings (no WiFi, no location services, and minimum screen brightness).
Finally, we conducted a qualitative study with developers of our studied apps, to assess the refactoring recommendations made by
EARMO. Developers found 68% of refactorings suggested by EARMO to be very relevant.

Index Terms—Software maintenance; Refactoring; Anti-patterns; Mobile apps; Energy consumption; Search-based Software
Engineering

+

1 INTRODUCTION

DURING the last five years, and with the exponential class, which is a large and complex class that centralizes
growth of the market of mobile apps [1], software most of the responsibilities of an app, while using the

Y - .



ENERGY MEASUREMENT

. nput voll Voltage
. - Eeg;lfmr
. -
Vdiff ’
Jen di 1.80
Oscilloscope
-
e
Trigger Power supply

Maobile device



ENERGY MEASUREMENT
R R T

- N - a
DETECTION OF
MEASUREMENT
EXTRACTION OF ANTI-PATTERNS GENERATION OF REFACTORING OF 20 APPS
ANDROID APPS P> AND REFACTORING | ™|  SCENARIOS > MoBILEAPPs | ®| _OF ENERGY 6012 FILES
CONSUMPTION 864 GB
CANDIDATES
- J \_ J - J \ J \ /L

Blob (BL) .
| azy Class (LC) Binding Resources too early (BE)

L ong-parameter list (LP) . HashMap usage (HMU)
Refused Bequest (RB) Private getters and setters (PGS)

Speculative Generality (5G)



ANTIPATTERNS AND ENERGY EFFICIENCY

Removing
Binding resources
waange OO €arly, Private
consumeton— gatters and
?éfﬂm setters, Refused
B Bequest, and
Lazy Class anti-
Datterns cae
mprove energy
efficiency

LP
SGH

Anti-pattern type



DO THEY REALLY
SMELL THAT
BAD?




EESIGIN FLAVVS CORRELATE Vi

BT VVARE DEFEC 1S INTRODUCTHCSSS

2010 10th International Conference on Quality Software

On the Impact of Design Flaws on Software Defects

Marco D Ambros, Alberic Bacchell, Michele Lanza
REVEAL @& Faculty of Informatics - University of Lugano, Swatzerland
| marco.dambeos, albertobacchelli, michele lanzal @usl.ch

Abstracf=—=The presence of design faws in a software sysiem
hus a negative impact on the guality of the software, as they
indicate violations of design practices and princples. which make
a software system harder to understand, mainizin, and evolve.
Software deflecis are tangible effects of poor software guality.

Im this paper we study the relationship between software
defects and a namber of design Baws. We [ound that, while some

design flaws are more frequent. none of them can be considered
more harmful with respect to software defects. Ve also analyvoed

the correlation belween the imbredoction of new Haws and the

generation of defects
Indexr Terms—Saftware guality and design; Software defects

I. INTRODUCTION

In the light of the increased complexity of wday’s software
syabems, it 18 no wonder that malntenance and evolution clamm
% of the total software costs [1]. In this comtext, much effon
has been devated to find approsches capable of detecting parts
of the source code that are likely to be harder o maimtain, o
e be more related to defects. Source code entities that have
design flaws are good candidates, since these are known 1w
have a negative impact on guality annbotes such as Aexibalicy
or madntapnablity [2]. However, simple source code metrics
are not capable of ldenifying poorly designed parns, because
thavy sl e asalvred and copidered 0 the comnevi 16w bdehi

different. Our goal i3 o compare whether and he
characteristcs induct, inflvence, or alleviate different

Although our goal 15 clearly defined, we do mot exp
able to fully determine U with s1x case studies, even th
conssder the comprehensive data from all the hastor

software systems analyzed. However, we do expect
some usefal evidence that can contrabute o tee an;

the relattonship between different design faws, and
design flaws and software defects, and also, help «

appropnate questions o ask in fulure case studies.
Structure of the paper In Secton I we introduace |

strategy: the techmgue we employ o idestify design

software avstems. In Section III we explain bow wy

hink, and process the actual data from source code
repositories, that we later use in Section IV o con
cone of the experiment In Section V we ouwtline the 1

the validity of this stady. In Secton VI we analyvze iy
research on detecting design Aaws and i the fGeld

analysid and prediction. We conclude in Secton VIL
[I. DESIGN FLAWS AND DETECTION STRATE(Q
As opposed to object-oriented metrics [10], which

measures of size (eg., lines of code, number of met
complexity (e.g., McCabe cyvclomatie complesity) of

0.7

0.6

0.5

0.4

0.3

0.2

0.1

M Brain methods

M Dispersed coupling

M Feature envy

Intensive coupling

Shotgun surgery




SRAIILS [IKEdlEN SPRE -

o

Smells like Teen Spirit: Improving Bug Prediction
Performance using the Intensity of Code Smells

Fabio Palomba®, Marco Zanoni!, Francesca Arcelli Fontana®, Andrea De Lucia®. Rocco Oliveto?
“University of Salerno, Ialy, "Undversity of Milano-Bioocca, Ttaly, PUniversity of Molise, Italy
fpalomba @umnsa.nl, marco. zanom @disco.animibal, arcellh®diseo undmiabor, adelocia @ umsaat, rocooeolives o animaol 1

Abstracf=—=Code smells are symptoms of poor dexign amd
implementation choices. Previons stndies empirically assessed
the impact of smells on code guality amd clearly indicate their
megative impact omn maintainabdity, induding a higher bug-
pronemess of components affected by code smells. In this paper we
capture previows findings on bug-pronemess to build a specialized
bug prediction model for smelly classes. Specifically, we evaluabe
the comtribution of a measure of the severity of code smells (Le..
code smell miensityl by addimg it to existing bog prediction
models and comparimg the results of the new model agamst
the bascline model. Results indicade that the accaracy of a bug

prediction model increases by adding the code smell micnsity
ns predicior. We aleo evaloate the actuad goim provided by the

imtensity index with respect to the pther metrics in the model
incloding the omes used to compuie the code smell imtemsity.

We obhserve that the indemsity index 5 much more important
ns compared to other metrics used for predicting the buggyness

of smelly clasxes.

prediction model can conteibide to the correct dassification of
the bugpgvness of such a component. To venfy this conjeciare,
we use the intensity mdex (e, a metric able o estimate the
severiy of a code smell) defined by Arcelll Fomana er ol [31]
to buald & bug predicion model thar takes iate account the
pregence and the severity of design problems affecting a code
compasent. Specilically, we evaluate the predictve power of
the imtensity index by adding ot in a bug predicuon model
based on stroctiural gquality metnes [32), and companng s
accuracy against the one acheeved by the baseline model on
six large Java open source systems. We also quantified the gain
provided by the addinon of the intensay ixlex with respect
to the other strechoral merics i the model, including the
ames used 1o compute the mtensity. Finally, we report Darther

analyses anmed at understanding (1) the sccuracy of 4 model

Smell intensity more
important than other

metrics for predicting

fault-proneness



non=smelly

classes

smelly

classes

DEFEC T-PRONENESS

10

15 20

# defects

29

30

35



DO THEY REALLY
SMELL THAT
BAD?

YES, BUE =




CODE SMELL DIFFUSENESS

Coupling-related code smells are generally poorly diffusea

Abstract Code smells are symploms of poor design and implementation chosces that

of the considered releases
may hinder code comprebensibiliny and maintainabality. Desplie the effort devoted by the :
:u:lila:-::h COTRERITY i:l':ulgmd;.'ing uiﬂe smells, the E.I.[Eil Li -.'.F;ui-::h code smells in guﬁj-:'.m | €O ntal ned d M €554 ge

syatems affect software maintainabality remains sill unclesr. In this paper we present a large

scale emplrical investigation on the diffuseness of code smells and thedr impact on code C h alNs INstance
change- and faolt-proneness, The sudy was conducted scross a todal of 395 releases of 30

On the diffuseness and the impact on maintainability
of code smells: a large scale empirical mvestigation

Fahio Palomba' *' - Gabriele Bavota® -
Mlassimiliano Di Penta® - Fausio Fasano? -

Roces Oliveto” - Andrea De Lucka”

Published online: 7 Angust 2017
£ The Autheeis) X017, Thas sl 18 am open acoess puhlicalsn




L ONGITUDINAL ANALYSIS

Without Smell -
With Smell-

Without Smell -
With Smell

Without Smell -
With Smell -




WHAT ABOUT THE MAGNITUDE
OF THE EFFECT?




SMALL EFFECT,
REFACTORING MIGHT BE WORTHLESS

some Code Smells Have a Significant but Small Effect on Faults

TRACY HALL, Brunel University
MIN ZHANG, DAVID BOWES, and Y1 SUN, University of Hertfordshire

Wi investignie the relationshap between fanlts and fve of Fowler et al's least-studied smells 10 code: Dhata
Clumps, Switch Statements, Speculative Generahty, Message Chams, and Middle Man, We developed o
tonl to detect thess five emells in three open-source evetems: Edipee, ArgelML, and Apache Cominsons
Wi collectod faalt data frem the chanpe and Tault repasstories of esch svatem. We built Negative Binomisl
regrepsion models (o analves the relationships betwesen amells and faulie amd report the MeFasdden affect
gige of those relationships. Our resulte sugpest that Switch Statements had Bo effect on faulte in any of the
thiree svetems: Mesaage Chains increased faualis in two ayatems; Measape Chains which oecurred in larger
filea reduced faulis:; Data Clumpe reduced faali= in Apsche and Eclipge but inereased faulis in ArgolTML:
Blidedle Man reduced faulie enly in ArgollML, and Speculative Geaerality reduced faulte only in Echipes,
File zige alons alfects faulis o some svetems bul not m all svstemas, Where gmells did sipnificantly affect
faualia, the z2ze of that effect was emall (alwaya under 10 percent). Our Bndings auppest that some smaells

da mdicate Imall-proge cods 0 2eme arcamstancess bal thal he allect thatl theee pmells have on Caults
18 Emall. Char lindings aleo ahow thatl ameldls Bave dilllerent elects on daflerent svatemaE. We condlusle thak
armtrary relscdoring @ unlikely o agFmdicantly reduce faull-proneneas and M SBO0me CRBEE MAY INCredsEs

ETFILR ST T el o TEE=



CODE SMELLS ARE DISCONNECTED
FROM ARCHITECTURAL PROBLEMS

ABSTRACT

architectural problems.

As software sysiems are maintained, their architecture
modularity often degrades through architectural erosion and
drift. More directly, however, the modularity of software
implementations degrades through the introduction of code
anormalies, imformally known ag code smells. A mumber of
strategics have been developed for supporiing the automatic
identification of implementstion anomalies when only the
source code is available, However, it is still unknown how
reliable these strategies are when revealing code anomalies
related to crosion and drift processes. In this paper, we
present an exploratory analysis that investigates to what
extent the aumtomatically-detected code anomalics are related
to problems that occur with an  evolving system's
architecture. We analyzed code anomaly occurrences in 38
versions of 5 applications using existing detection strategics.
The outcome of our evaluation sugoests that many of the
code anomalies detected by the employed sirategics were
nod related to architectural problems. Even worse, over 50%
of the anomalies not observed by the emploved technigues
{false mnepgatives) were found to be correlated with

Are Automatically-Detected Code Anomalies Relevant to

Architectural Modularity?
An Exploratory Analysis of Evolving Systems

Isela Macia', Joshua Garcia®, Daniel Popesca’, Alessandro Garcia', Nenad Medvidovic’, Amndt von Staa'

‘Opus Group, LES, Informatics Department, PUC-Rio, B, Brazl
“Unaversity of Southern Californiz, Los Angeles, CA, USA

[ibertran, afgarcia, amdtl@inf.puc-rio_br, {joshuaga, dpopescu, nenolsuse. sdu

of modularization technigue, including  object-orienied
programming [31] and aspect-orienied programming [19].
Code anomalies are often considered as key indicators of
architectural degradation [13]. Hence, if these code
apomalics are noi systematically removed, the system's
architectures may degrade due to erosion or drift [16].
Architectural erosion ocours when architectural vielations
are introduced, whereas drift is the realization of unintended
design decisions also known as architectural anomalies [39].

The detection of architecturally-relevant code anomalies
is particularly challenging when architectural designs are
absent or obsolete, which is a common situation in evelving
software projects. A complicating factor is that, due to time
constraints, developers often need to concenirate on the
miost relevant anomaliea. In other words, they should focus
on ¢ode anomalies that are actually contributing o
architecture erosion or dnfi. Let's consider a simple example
of code anomaly, such as God Clase [27]. Occeurrences of
God Class only cause harm to the architectural modualarity
when  their realization of multiple concerns  introduce
undesirable dependencies between architecture elements
(e.g., multiple architecture layers). Therefore, such rod
Class instances require closer, more immediate atiention

T E——— ===

Smells not reflected in

architectural problems

Architectural problems not
discovered by smell

detectors



SMELLS ARE EFFICIENT WAYS TO
ORGANIZE THE SOURCE CODE...

Are all Code Smells Harmful? A Study of God

Classes and Brain Classes in the Evolution of three
Open Source Systems

Steffen M. Olbnich

Fraunhofer [ESE
K.aigerslautern, Germany
steffen.olbrichi@icse. fraunhofer. de

Damiela 8. Cruzes

Department of Computer and Information Science
Morwegian University of Science and Technology
Trondheim, Norway
deruzesiidininu.no

Dag LK. Sjoberg
Departrent of Informatics
University of Osglo
Oslo, Norway
dagsj@ifi.uio.no

Abstract—Code smells are particular patterns in object-oriented
systems  fhat are perceived o lead (o difficulties in  the
maintenance of soch syslems. Il & beld that to improve
maintaimability, code smells should be eliminated by refacioring.
It is claimed that classes that are invelved in certain code smells
are liable to be changed more [requently and have more defects
than other classes in the code. We investigated the exient to
which this claim is true for Ged Classes and Bruin Classes; with
awnd witheut normalizing the effects with respect (o the class skce.
We analyred historical data from 7 to 100 years of the
development of three open-source saflware systems. The resalts
show that God and Brain Classes were changed more frequently
amd condained mare deflecis than sther kinds of class. However,
when we aormaliced the measared effects with respect to size,
them God and Brain Classes were [evs subject (o change and had
Jewer defects tham ether classes. Hemce, under the assumption
that CGod and Braim Classes coniain on average as muach
famctionality per line of code as other classes, the presence of God
und Brauin Classes is nol necessarily harmfiul; in fact; such classes
may be an efficient way of organiking code.

gpecific smells, including one that they called Large Class,
were correlated with more frequent changes. Lozano of al. [13]
investigated the open-source system Dnslava and found that
mcthods that had been cloned were changed more often than
those that had not. A study by Olbrich et al. [23] of two open-
gource systems showed that classes with code smells (God
Clags and Shotgun Surgery) were changed more ofien than

other classes. Furthermore, God Classes in particalar were
subject to larger changes than were other classes.

Regarding the effect of code smells on defects, Li and
Shatnawn [11] found that the smells Shotgun Surgery, God
Class, and God Methods were associated poaitively with the
aumber of defects in three releases of Eclipse (3.0, 2.1, 200 A
stiudy by BRahman et al. [23] of the open-source systems
Apache hitpd, Nautilug, Evelution, and Gimg showed that mmost
bugs have very little to do with clones. Deligiannis et al.
conducted an experiment wsing students as subjects that
showed that a systern with a God Class led to more difficulties
in maintenance tasks than did the same svstem without a God

unior developers perform

better when working with

source code with a centraliies

control style



SMELLS DO NOT INCREASE
MAINTENANCE EFFORT

Quantifying the Effect of Code Smells
on Maintenance Effort

Dag LK. Sjgberg, Member, IEEE, Aiko Yamashita, Sfudent Member, IEEE, Bente C.D. Anda,
Audris Mockus, Member, IEEE, and Tore Dyba, Member, IEEE

Abstract—Context: Code smells are assumed 1o indicate bad design that leads 1o less maintanable code. Howesar, his assumplion
has nol bean Fvestigaled n cantrolled studies with professional software devalapars. Alfmc This pager rivestipales the relalionhip

babwean code smals and mantenance afforl, Method: Six developars wara hirgd to paform thres martenance 1asks aach on four
furctianally equivalenl Java systems angnally implemenled by diferant companes. Each devalopar spent three ta [our weaks, In total,

ey madified 253 Java Hles in She four systame, An Eclipss IDE plig-in measadrad the axact amount ol fime & developer spel
rairfainirg each fle. Begresson analysis was used 1o explan the slicet using lile progerties, ncluding the number al smells. Result:

Mone o tha 12 Invasligatad smsls wabk signifcantly associatad with Increasad afton athar wa edjusted for fle size and fhe numbar o
charnges; Balused Bequest was signfcanlly azsaciated with decreased eMorl. File 5re and e number af charges axplaired almos

all of tha mocaked varahon in eftcet, Concluslon: The afacts of the 12 smalls on martanance afon wara limitad. To redics
| mairenancs affar, & facus on reducng code size and he work practices that limit the number of changes may be mare bansfical than
4 redachonng Coia smells




ON THE LIFE AND DEATH

y o




Tracking Design Smells:
Lessons from a Study of God Classes

Stéphane Vaucher Foutse Khomh Naouel Moha Yann-Gaél Guéhéneuc
GEODES / Ptidej Team Triskell Team Ptidej Team
n- savbpany s Sl SRR e : T s ey
Un

i i When and Why Your Code Starts to Smell Bad
(and Whether the Smells Go Away)

Michele Tufano®, Fabio Palomba®, Gabriele Bavota®

t Abs’f’ ‘l’“—“(l;‘ Rocco Oliveta®, Massimiliano Di Penta”, Andrea De Lucia®, Denys Poshyvanyk!'

ype ol large cla

Often a God clas IThe College of William and Mary, Williamsburg, VA, USA *University of Salerno, Fisciano (SA), Italy,
are incremental IUniversita della Svizzera italiana (USI), Switzerland, University of Molise, Pesche {I1S), Italy,

of its evolution, "University of Sannio, Benevento (BN}, Italy

of bad code thg

software quality mtufano@email.wm.edu, fpalomba@unisa.it, gabriele.bavotai@usi.ch

design as the b rocco.cliveto@unimaol.it, dipenta@unisannio.it, adelucia@unisa.it, denys@cs.wm.adu

for example, the

»
st saavninme e anp



VWWHEN BLOBS ARE INTRODUCED

Commits required to a class for becoming smell

0 25 50 75 100
| | | | |

Generally, blobs affect a

class since its creation




VWWHEN BLOBS ARE INTRODUCED

Commits required to a class for becoming smell

; £ 50 75 100

Generally, blobs affect a
class since its creation

There are several cases in which a blob 1s
introduced during maintenance activities




SMELL REMOVAL

Code Removal

Code Replacement

Code Insertion

Refactoring

Major Restructuring

0% 10% 20% 30% 40% 50%



CONFIRMED BY A RECENT STUDY
THROUGH INTERVIEWS

"Refactoring activity 1s mainly driven by changes in the
requirements and much less by code smell resolution.”

Why We Refactor? Confessions of GitHub Contributors

Danilo Silva Mikolaos Tsantalis Marco Tulio Valente
Universidade Faderal de Concordia University Universidade Federal de
Minas Gerais, Brazil Montreal, Canada Minas Gerais, Brazil
danilofsi@dcc.ufmg.br  tsantalis@cse.concordia.ca mtovi@dec.ufmg.br

ABSTRACT As a second example, MOVE METHOD s assocated to smells
like Feature Eovy and Shotgun Surgery |10,

There 15 a limited number of studies investignting the real
mirtivations driving the refactoring practice based on inter
views and feedback from actual developers. Kim et al. [17]
explicitly asked developers “in which situatons do youo per
femrrr rebseferimnee T a1 oFreevieree] 140 mcde 2ok PEeuk

Hetactonng 1s a widespread practice that helps developers
o improve the maintainability and readability of their code.
Howewver, there is a limited nomber of studies empirically
mvestigating the actual motivations behind specihe relac
toring operations applisd by developers. To hll this gap,




...o0 DEVELOPERS FOCUS ON OTHER
THINGS WHILE DOING REFACTORING...

Evaluating the Lifespan of Code Smells using Software Repository Mining

Ralph Peters
Dellt University of Techrology
The Netherlards
Emaid: ralphpeters83@ gmail com

Absirgot=—An anii-patlern is a commonly eooorring sedution

to a recurring problem that will typically negatvely impaci

oode quality. Code smells are considered to be symploms of
anmti-patterns and occur at source code level. The lifespan of

oode smells in a software system can be defermined by mining
the software repository on which the system is stored. This

provides insight into the behaviowmr of softwoare developers
wilh regard to resolving code smellk and anti-patierns. In

a case siudy, we investigale the lifspan of code smells and
the refacioring hehaviour of developers in seven open source

systems. The results of thix study indicate thal engineers are

aware of code smells, but are mot very comcermed with their
impact, given the low refacioring activity

Andy Laidman
Delft University of Technology
The Nerherlands
Ermurl: e zoidmcn @ el nl

svstem 6], In partcular, for each code smell we determine

when the infection takes place, L&, when the code smell is
introduced and when the underlying cause 15 refactored.

Having knowledge of the lifespans of code smells, and
thus which code smmells tend w stay in the source code for a
long time, provides insight o the perspective and aware-
ness of software developers on code smells. Our research 18
steered by the following research questons:

RO Are some types of code smells refactored mone and

quicker than other smell types?
RO2 Are relatvely more code smells being refactored at an

early or later staee of a avsiem's hfe cyele?

s m——



BEYOND CODE SMELLS...




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by
and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.2. ORMs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

¢ _nooe

..... 1 cant ta tha datahaca Do ot Fae tha cathae Feaaian

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL

Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture
of an information system, and the way it stores the data delimits
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the
implementation of such a communication layer has to be reliable
and efficient. SQL is a popular language to query a database,
and modern technologies rely on it (or its dialects) as query
strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

technologies to communicate with a DB, while JDBC occurs
as the only database framework in 56.3% of the projects [3].

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-
nication with the database into the application code, e.g.. by
providing a link between Java classes and database entities
(e.g. ORMs), or merely by supporting to reuse and construct
queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

..... 1 cant ta tha datahaca Do ot Fae tha vathae Feaaiiant anos

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5,

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring

down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software

MAY 2018




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by
and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.2. ORMs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

¢ _nooe

..... 1 cant ta tha datahaca Do ot Fae tha cathae Feaaian

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




L SR

Tool for detecting query antipatterns from Bill Karwins SQL

SImilar change-, defect-proneness, and survival
properties of traditional smells

PRECISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be. Tanthony.clcvc @unamur.be

Abstract—A database plays a central role in the architecture
of an information system, and the way it stores the data delimits
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the
implementation of such a communication layer has to be reliable
and efficient. SQL is a popular language to query a database,
and modern technologies rely on it (or its dialects) as query
strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

technologies to communicate with a DB, while JDBC occurs
as the only database framework in 56.3% of the projects [3].

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-
nication with the database into the application code, e.g., by
providing a link between Java classes and database entities
(e.g. ORMs), or merely by supporting to reuse and construct
queries (e.g. prepared statements). However, as a drawback,
a developer hardly sees the final SQL query that is, in the

-~ -
.\.\r' Mvaent fl\‘\ rlnfnl\n.u\ E\.'l\‘\-\f ¥ LSRR -n\fl‘\‘\'- e ranarnondt P reie




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and genizing, and exccuting test suites, nowadays appropriate
- S . o ’ framewnrke (o n  TlTnit [0 _cancaivad far nnit tactine hat

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by
and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.2. ORMs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

¢ _nooe

..... 1 cant ta tha datahaca Do ot Fae tha cathae Feaaian

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




EDE SMELLS IN MODEL=ViE s
NI ROLLER ARCHITECURES

SImilar change-, defect-proneness, and survival
 properties of traditional smells

Model
Published cading: 12 September 2017
i The Aulbeeis) 2017, Thas articlé 18 an open sisess puhlicalzm | Repositories
request . Controller manipulates )
Entities
Abstract Previous stsdies have shown the negative effects that low-guality code can have renders o
on marmtasability proxies, such as code change- and defect-proneness. One of the symp- " D% Semices
toanis of low-quality code are code amells, defined as sub-optimal implementatson cholces. U
While thiz definition 13 guite perseral and seerms 1o suggest a wide spectrurm of smells that can I .
omponents

affect software systems, the research literature mosty focuses on the set of smells defined in




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by
and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.2. ORMs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

¢ _nooe

..... 1 cant ta tha datahaca Do ot Fae tha cathae Feaaian

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




BERVICE ORIEN [ ED ARCHITEC FEHSS
o i B

Service antipatterns are more change-prone anc
require more maintenance effort than other services

Abstract—Servic

systems, evolve duy Investigating the Change-proneness of
e\ecutu.m contexts. X .
the deglen and.req Service Patterns and Antipatterns

ay result in pool

antipatterns. SOA
and reusability of
and then remove tl

detection are still i Francis Palma*', Le An*, Foutse Khomh*, Naouel Moha' and Yann-Gaél Guéhéneuc®
for their automati *Ptidej Team, DGIGL., Ecole Polytechnique de Montréal, Canada

and innovative ap "Latece, Département d’informatique, Université du Québec & Montréal, Canada
SOMAD (Service 'SWAT, DGIGL, Ecole Polytechnique de Montréal, Canada

which is an evoluti Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc } @polymtl.ca, moha.naouel @ugam.ca



TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the Vs y [ T
implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.g. ORMEs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




FINERG Y SR

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ™, Lee Kee Chong, Clement Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of

Removing energy smells can reduce energy
consumption of apps by up to 60 percent.

—




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by
and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.2. ORMs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

¢ _nooe

..... 1 cant ta tha datahaca Do ot Fae tha cathae Feaaian

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by
and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.2. ORMs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

¢ _nooe

..... 1 cant ta tha datahaca Do ot Fae tha cathae Feaaian

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




TEST SMELLS

Affect

. % Sa ern, . dreg De . " ' g
b Riverg;, .ﬂ' ch;‘a Luczal’ Dav: )
& ﬂVota@untlra,i“ JLa)’Dla U ‘tyofMol‘S% Pe, o (54), lraty avid Bmkk‘ya | | Ial ntal na I It
b AGusef@y;. - . Univerg Sche (15 T
4RESQiL roee, f oy Maryjg,, . Ba; ) Iraly
-Olivero @ ! iMore, 17
Abstrg ) “nimol jy > US4
deVEInpm::TUmt tes ting e A Gds[ucta@umka it b
Qualits o 2t A0d Maine,.. PTESENLS 3 Lo, "5 binkleva.... »

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michele Tufano', Fabio Palomba®, Gabriele Bavota®, Massimiliano Di Penta*
Rocco Oliveto®, Andrea De Lucia?, Denys Poshyvanyk!
! The College of William and Mary, USA — 2 University of Salerno, Italy — # Universita della Svizzera

italiana (USI), Switzerland — * University of Sannio, ltaly — ® University of Molise, Italy aS i m po rtant

ABSTRACT of the system. To ease developers’ burden in writing, or-
1 Test smells have been defined as poorly designed tests and, genizing, and exccuting test suites, nowadays appropriate
as renarted bv recent emnirical studies. their nresence mav frameworks (e.g., JUnit [9])—conceived for unit testing but

EODE SMELLS IN MODEL-VIE &8
EONTROLLER ARCHITEC Y=

Code smells for Model-View-Controller architectures

Mauricio Aniche! © . Gabriele Bavota? -
Christoph Treude? - Marco Aurélio Gerosa® - \

Arie van Deursen’!

Model
Published online: 12 September 2017
© The Author(s) 2017. This article is an open access publication et ) anipulates Repositories
Entiti
Abstract Previous studies have shown the negative effects that low-quality code can have fendors o N
on maintainability proxies, such as code change- and defect-proneness. One of the symp- / S
toms of low-quality code are code smells, defined as sub-optimal implementation choices. View
While this definition is quite general and seems to suggest a wide spectrum of smells that can I Comphnts
affect software systems, the research literature mostly focuses on the set of smells defined in

INERAS TRUCTURE-AS-CODE SMESES

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

ABSTRACT 1. INTRODUCTION

Infrastructure as Code (IaC) is the practice of specifying Infrastructure as Code (IaC) [13] is the practice of spec-
computing system configurations through code, and manag- ifying computing system configurations through code, au-
ing them through traditional software engineering methods. tomating system deployment, and managing the system con-
The wide adoption of configuration management and in- figurations through traditional software engineering meth-
creasing size and complexity of the associated code, prompt ods. For example, a server farm that contains numerous
for assessing, maintaining, and improving the configuration nodes with different hardware configurations and different
code’s quality. In this context, traditional software engi- software package requirements can be specified using con-
neering knowledge and best practices associated with code figuration management languages such as Puppet [39], Chef
quality management can be leveraged to assess and manage [37]‘, CF ELngine (4], or Ansible [11 aIILd deployed zzutomatically

1 INTRODUCTION

C

Aaumlaadaed antn dadiratead macl Ahotraent MNMoantimianne Infoaaration (T e o aadalsrscad cnfé. ocorrelatec wanth the lilalibhand Af the ovictenmre of a desnar

ENGUISTIC ANTIFATTERRNS

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova - Massimiliano Di Penta -
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

Perceived as serious
concerns by developers

When present in APls,

correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

SERVICE ORIENTED ARCHITECHEISE

SIMlELES

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathieu Nayrolles, Naouel Moha, and Petko Valtchev

LA’I‘F(‘I" Maciaa Mluanibninnncnt AV i Crnsiinnntblimeen Tlileinanlod due Muillinn A MM cibaalal Nncan A
Abstract—Servig .

e exaly dy Investigating the Change-proneness of
execution contexts,
o Service Patterns and Antipatterns
anﬁpatterns. SOA
and reusability of
and then remove t
detection are still i Francis Palma*', Le An?, Foutse Khomh?, Naouel Moha! and Yann-Gaél Guéhéneuc*
for their automati *Ptidej Team, DGIGL, Ecole Polytechnique de Montréal, Canada
and innovative ap fLatece, Département d’informatique, Université du Québec a Montréal, Canada
SOMAD (Service YSWAT, DGIGL, Ecole Polytechnique de Montréal, Canada
which is an evolut Email: {francis.palma, le.an, foutse.khomh, yann-gael.gueheneuc} @polymtl.ca, moha.naouel @ugam.ca

SHEEESIN CON
INTEGRATION P

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis ClI

Keheliya Gallaba, Student Member, IEEE, and Shane Mclntosh, Member, IEEE

Abstract—Continuous Integration (|
appear in the version control systen
there are several service providers

meermesna et - Automated Reporting of Anti-Patterns and Decay in

associated with configuring job prog

T o maoes Continuous Integration

anti-pattern removal tool for TRAVIS,
automatically. Using GRETEL, we ha

Index Terms—Continuous integrati Carmine Vassallo Sebastian Proksch Harald C. Gall Massimiliano Di Penta
| Department of Informatics ~ Department of Informatics  Department of Informatics ~ Department of Engineering
University of Zurich University of Zurich University of Zurich University of Sannio
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland Benevento, Italy
vassallo@ifi.uzh.ch proksch@ifi.uzh.ch gall@ifi.uzh.ch dipenta @unisannio.it

ONTINUOUS Integration (CI) i
practice in which the latest cg

INUOUS
PELINIES

SOt SMIEEES

Tool for detecting query antipatterns from Bill Karwins SQL
Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy*, Anthony Cleve'
PReCISE Research Center, University of Namur, Belgium
*csaba.nagy @unamur.be, Tunllmn_\:cl&:\‘c@‘ unamur.be

Abstract—A database plays a central role in the architecture technologies to communicate with a DB, while JDBC occurs
of an information system, and the way it stores the data delimits as the only database framework in 56.3% of the projects [3].
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-

implementation of such a communication layer has to be reliable nication with the database into the application code. e.g.. by
and efficient. SQL is a popular language to query a database, providing a link between Java classes and database entities
and modern technologies rely on it (or its dialects) as query (e.2. ORMs), or merely by supporting to reuse and construct

strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in

queries (e.g. prepared statements). However, as a drawback.
a developer hardly sees the final SQL query that is, in the

¢ _nooe

..... 1 cant ta tha datahaca Do ot Fae tha cathae Feaaian

ENERG T SIMEEES

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.44, NO.5, MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhijeet Banerjee ", Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury

Abstract—Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity and usage of
mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient behaviour, where one or more energy-intensive
hardware components (such as Wifi, GPS, etc) are left in a high-power state, even when no apps are using these components. We
refer to such kind of energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to exhibit
poor energy consumption behaviour and a drastically shortened battery life. Since mobiles apps can have huge input domains,
therefore exhaustive exploration is often impractical. We believe that there is a need for a framework that can systematically detect and
fix energy bugs in mobile apps in a scalable fashion. To address this need, we have developed EnergyPatch, a framework that uses a
combination of static and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use of a light-
weight, static analysis technique enables EnergyPatch to quickly narrow down to the potential program paths along which energy bugs
may occur. Subsequent exploration of these potentially buggy program paths using a dynamic analysis technique helps in validations of
the reported bugs and to generate test cases. Finally, EnergyPatch generates repair expressions to fix the validated energy bugs.
Evaluation with real-life apps from repositories such as F-droid and Github, shows that EnergyPatch is scalable and can produce
results in reasonable amount of time. Additionally, we observed that the repair expressions generated by EnergyPatch could bring
down the energy consumption on tested apps up to 60 percent.

EOMMUNIT Y SIMEEES

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?

Fabio Palomba, Member, IEEE, Damian A. Tamburri, Member, IEEE,
Francesca Arcelli Fontana, Member, IEEE, Rocco Oliveto, Member, IEEE,
Andy Zaidman, Member, IEEE, Alexander Serebrenik, Senior Member, |IEEE.

Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by
conducting a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software




AN TIPAT TERNS AND SMELLS IN MULTI-
PANGUAGE SYSTEMS

Forthcoming @EuroPLOP™19, CASCON'19, TPLOP

Anti-Patterns for Multi-language Systems

Mouna Abidi

Polytechnique Montreal
mouna.abidi@polymtlca

Yann-Gaél Guéheneuc
Concordia University
yann-gael pueheneuci@concordia.ca

ABSTRACT

Multi-language systems are common nowadays becawse most of
the sy stems are developed using components written in different
programming languages. These systems could anse from three
different reasons: (1) to leverage the strengths and take benefits
of each language, (2) to reduce the cost by rensing code written
in other languages, {3) to include and accommodate legacy code.

Manel Gricha
Polytechnique Montreal
manel grichi@polymtl.ca

Foutse Khomh

Polytechnique Montreal
foutse khomh@polymtl.ca

Software quality is one of the most immportant cor
to reduce testings, maintenance, and evolution ¢

Software quality partly depends on adopding i
patterns, and avoiding code smells and design |
example, design patterns [4] describe good solu
design problems. On the contrary, design anti-
poor solutions to design problems [5, 6]. Design

Code Smells for Multi-language Systems

Mouna Abidi
Polytechnique Montreal
mouna.abidi@polymtl.ca

Yann-Gaél Guéhéneuc
Concordia University
yann-gael.gueheneuc@concordia.ca

ABSTRACT

Software quality becomes a necessity and no longer an advantage.

In fact, with the advancement of technologies, companies must
provide software with good quality. Many studies introduce the use
of design patterns as improving software quality and discuss the

Manel Grichi
Polytechnique Montreal

manel.grichi@polymtl.ca

Foutse Khomh

Polytechnique Montreal
foutse.khomh@polymtl.ca

and HTML [1]. Most of the systems with which we interact daily
are built using a combination of programming languages, such as
Facebook, Youtube, etc[2]. Developers can reuse existing modules
and components, without writing the source code from scratch [3].
They often choose the programming language most suitable for



TAKEAWAYS - SMELLS

Bad practices in (software) development are everywhere, beyonc

source code

Smell detectors to be used to trigger alarms and prevent future
problems, rather than for predicting



TAKE AWAYS - GENERAL

The magnitude of a phenomenon might change based on the angle
from which one observes it

Intensity more important than mere presence/absence of

Symptoms



SSGLUR &



Results
Results RQ1 (Azureus)

(1/6) Results

Smells-Changes
Smells-No Changes
No Smells-Changes

No Smells-No Changes

m (Eclipse)

Releases p-values OR
3.1.0.0 220 1967 20 1433 < 0.01 [8.01
3.1.1.0 564 1686 101 1381 <001 457
4.0.0.0 83 2238 7 1519 < 0.01 |8.05
4.0.0.2 106 2206 12 1510 < 0.01 6.04

4.0.0.4 435 1886 39 1484

< 0.01 8.77

ClassGlobal Variable
ClassOneMethod

ComplexClassOnly
ControllerClass
DataClass

FewMethods
FieldPrivate
FieldPublic

= Results RQ3
(Eclipse)

FunctionClass
HasChildren
LargeClass
LargeClassOnly
LongMethod

LongParameterListClass
LowCohesionOnly
ManyAttributes
MessageChainsClass
MethodNoParameter
Multiplelnterface
Nolnheritance
NoPolymorphism
NotAbstract
NotComplex
OneChildClass

-
z
-

ParentClassProvidesProtected

RareOvernding
Twolnheritance

mResults RQ2

(4/6)

Releases M-W t-test Cohen
7/' P d
1.0 0.79 0.03 0.06
2.0 <001 | <001 Lmrr'
2.1.1 < 0,01 < 0,01 0.31
212 < 0.01 < 0.01 0.13
2.1.3 0.04 < 0,01 0.07
3.0 0.07 0.10 0.03
3.0.1 0.11 0.26 0.03
302 0.12 0.28 0.02
3.2 < 0.01 < 0.01 041
3.2.1 < 0.01 < 0.01 0.29
3.2.2 < 0,01 < 0,01 (.25
3.3 <001 | <001
3.3.1 < 0.01 < 0,01 >

4.1.0.0 50 2297 11 1533 < 0.01 3.03
4.1.0.2 112 2235 11 1533 < 0.01 6.98
4.1.04 112 2236 12 1532 < 0.01 6.39
4.2.0.0 37 2353 3 1580 < 0.01 8.28
Smells | Proneness 1o
Changes
| AbstractClass | | . .
Results ChildClass (6/6) DlSCUSSlOl’l

classes.

E—y:v-b;—x.ﬂ-:
EUE & 1 semv N5E B

TEST SMELLS

An Empj,;
Tcal Apgy,
Iysis of the
nd Thejr Distribugigy
Tmpact on s,,,,,,.: M'Z Unit gy Smetty

e Affect
maintainability. ..

Abra_g,
W ey
avadi 2 A0 it P

...but developers
rarely perceive them

An Empirical Investigation into the Nature of Test Smells

Michale Tuano’, Fabio Palomba’, Gabriala Bavoia’, Massmitano DI Panta*
cco Ofiveto, Ancres De Luga', Denys Poshyvanyk'
! Tra Cobege of Wilkam and Mary, USA — * Universty of Sakema, Haly — * Universith deta Svizzanm
Rakana (USD, Switterand — * University of Samnic, ity — * Universly of Molss, Ty

as important

ABSTRACT
Took senris e bows ekt s penely desigand tusks wrd
o o mmowrd, soenicicnl st e, Shei

CODE SMELLS IN MODEL-VIEW
CONTROLLER ARCHITECURES

Code smells for Model-View-Controller architectures

Mauricio Aniche' - Gabriele Bavota® -
Christoph Treude' - Marco Aurélio Gerosa® -
Arie van Deursen'

-
Published anline: 12 September 2017
© The Authar(s) 2017, This article is an open access publication Py

— —

T
Abstract Previous studies have shown the negative effects that low-quality code can have nanl g -
on maintainability proxies, such as code change- and defect-proneness. One of the symp- 3 < F
toms of low-quality code are code smells, defined as sub-optimal implementation choices. e
‘While this definition is quite general and seems to suggest a wide spectrum of smells that can o

affect software systems, the research literature mostly focuses on the set of smells defined in

INFRASTRUCTURE-AS-CODE SMELLS

Does Your Configuration Code Smell?

Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis |
Dept of Managemef'\l Sclence andnlechnology
ity of E 1 and Bus)

Athens Uni
Athens, Greece
{tushar,mfg.dds}@aueb.gr

ABSTRACT 1. INTRODUCTION
Infrastructure as Code (InC) is the practice of specifying Infrastructure & Code (LaC} [13] Is the practice of spec-
computing system configurations throagh code, and manag- ifying compating system configurations through code, au-
ing them through traditional software engineering methods tomating system deployment, and managing the system con-
The wide adoption of and in- through ional moftwnre meth-
creasing siue and compleity of the ssociated code, prompt  ods. For examplo, & server farm that comtaing mumerous
for asscssing, malntaming, and lmprovieg the configuration

code's quallty. In this costext, traditional software engi-
eoring knowlodge and best practices mssoclatod with code
quality management can be everaged to assess and manage

nodes with different hardware configurations and d
software package requirements can be specified

figuratson management languages such as Puppet
137], CFEngine [4]. or Ansible [1] and deployed asto

LINGUISTIC ANTIPATTERNS

Linguistic antipatterns: what they are and how

developers perceive them : ;
b i s Perceived as serious

Venera Arnsoudova - Massimiliano Di Penta «
Giuliane Antoniol

concemns by developers

When present in APIs,
correlate with the increase
of Stack Overflow
questions [Aghajani et al.]

Peblished online: 29 Jmuacy 2015
© Sprisges ScacncesBusiness Media New Yoek 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brawn et al. and Fowler define practices concerning poar design or implementation solu-
tions, However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is (o identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To

SERVICE ORIENTED ARCHITECTURE
SMELLS

Improving SOA Antipatterns Detection in Service
Based Systems by Mining Execution Traces

Mathseu Nayrolies, Naooel Moba, and Petko Valichey
e - ot . P .-

Investigating the Change-proneness of
Service Patterns and Antipatterns

Prances Pabma®, Le An', Youse Kiomh!, Nooool Moka' and Yamn-Ciatl Ganthinons™
“Pade e P de

SMELLS IN CONTINUOUS
INTEGRATION PIPELINES

Use and Misuse of Continuous
Integration Features
An Empirical Study of Projects that (misjuse Travis CI
Kehelya Gallaba, Student Member, /EEE, and Shane Mcintosh, Member, IEEE ‘

Abstruet St Honparion |
RGN 1 I8 Ve Cortel yvnent
s 40 s 4100 grwitens |

sesmesnt Automated Reporting of Anti-Patterns and Decay in
Continuous Integration

asncci Wi 0¥ b gk
Thawn G 20s W thtr
Srancss i e corpum (3 0%, 338
At gdem raramd 1o s TamS
sutrrasay Unng GaFTie. we bt
Whtes Tomms - Cortruens ieigri Harald C. Gall Massimiliano Di Penta
of Informatics of
University of Zurich University of Sannio
Zurich, Switzerlaad Benevento, lualy
gall@ifiuzhch dipentaGunisannio.it

Carmine Vassallo Sebastian Proksch
Department of Informatics  Department of informatics
University of Zurich University of Zurich
Zurich, Switzerland Zurich, Switzeclaad

uzhch @if.uzh.ch

1 INTRODUCTION

ONTINUOUS Integration (C1) &
peactice in which the latest od

m Classes with smells are more change-prone,
some odds ratio 3 to 8 times bigger for these

m HasChildren, MessageChains, NotComplex,
and NotAbstract lead almost consistently to
change-prone classes.

s m Existing smells are generally removed from

i ] the system while some new are introduced in

the context of new features addition.

Tool for detecting query antipatterns from Bill Karwins SQL

SQL SMELLS

Antipatterns catalog

A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Abcrat A dutbes phays o srmtrel role bn B sevhibeetary  Wchaodogien o commmniine Wil & DI, whsde JOBC sccur
i bt vy, sl e w8 b S dte et p—

e T T ——
The war B b ol Lo o e applicution commmnicstes
with e b s of crithond bgertamer S Thervire the
At st o & oo stnom L4t M b b oo

Ihrvnch severl siring eperstim that wintrect devchopers b

ENERGY SMELLS

EEE TRANSACTIONS ON SOFTWARE ENGNEEAING, VOL &4, NO.S. MAY 2018

EnergyPatch: Repairing Resource Leaks to
Improve Energy-Efficiency of Android Apps

Abhjeet Banegee @, Lee Kee Chang. Clément Batabriga, and Abhik Roychoudhury

AbStract—incroased usage of motie SOWORS. SUCh X5 STANphones and tatiots, has lod 10 widespread popuarty and usage of
moble apps. 1 ot carehuly developed. Such 3005 My SemGnETate energy-NeMicient DERIVOUT. Where ONe OF MGFE enery-nionse
Pardware components (such 23 Wit GPS. #ic) are e 1 3 high-power statn. even when N0 3pPS 0 LBng thase components. We
tefer 10 3uch kind of energy-reficencies as energy Sugs. E3e0uSng an S0P with an ensrgy bug causes the moble device 1o exhibe
P00 energy Consumption bohawicur and  drasticaly shortened battery e, Sinco mobiles apps Can have fuge input domains,
Turelorn exhmstis exhrsion ® Shen epracice e bateve at thern @ & nead Kr & IrAmewors Bt can systomatcally detect
fx nergly Bugs 1 Mote DI I & scalitie taston. To Adess e noed. we have develpod EnargyPaich, a Tamewos: that :5es
COMbenon of SN AND Byname: aratyn WChrres [0 GAINC, Va0 M ~0pair 6nargy bus 17 Androd agps The use of A lht-
WO St analye 16Chnigue Braties Eneny©atch 1o Quickly narTow down 15 the polential program paths aong which enorgy bugs.
iy 0ce . SUE0QUENt e xplorEon of hess Cotertly BUQZY SIOGTA DTS LG & dyNAmiC analyss 1ochn i helps in valkdations of
P reporied bugs and 1 gonere test cases. Finaly. EnergyPatch ganerates regakr exprossions 10 ix the valkdatod enorgy bugs.
Evahustion with real-#10 a0ps Som rpostcres such as F-aroid and Github, shows Pat ErergyPulch is scalatle and can produce
03RS in roascratie aMount of e AddtGraly. we chierved that the repai exprossons generated by EnergyPalch coukd bring
Bwn e gy COMMUTERN o e KT8 L %) €0 fetecont

COMMUNITY SMELLS

Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells?
Fablo Palomba, Mamoer, IEEE, Damian A. Tamburn, Member, IEEE,

Francesca Arceli Fortana, Membey, IEEE, Rooco Oliveto, Mambe, IEEE,
Andy Zaidman, Member, \EEE, Alexander Sercbrenk, Senvor Membey, IEEE.

Atsren
ws o0 ko N i 10 sarve iy wh o S5an it
thod rray project conte e
n . 1s tha pazer
o 117 rebaman. Tae quitarve aw
Ot v haNS. wh survey 162
o egens wate

ety "
6900 b AU 1 T60 Semects. O T30 CLFer Darsd. wh OrTBen .1 (raiw) ey i T 117 INNSS Of 0! G005 0
Passre e miart 0w wrrels Fuzact cods alivbenaty (L 6. Crticaby]. We then +35cee & 036 aresl ehesEy
m

sd o -y

eF1S LIKEZdS

[ - i X )‘_'
SIRYA, - . [
- e = _ -~

Smells like Teen Spirit: Improving Bug Prediction
Performance using the Intensity of Code Smells

Fabio Palomba*, Marco Zanonif, Francesca Arcelli Fontanaf, Andrea De Lucia*, Rocco Oliveto?

*University of Salerno, Italy, fUniversity of Milano-Bicocca, Italy, iUnive:rsity of Molise, Italy
fpalomba@unisa.it, marco.zanoni@disco.unimib.it, arcelli@disco.unimib.it, adelucia@unisa.it, rocco.oliveto@unimol.it

Abstract—Code smells are symptoms of poor design and
implementation choices. Previous studies empirically assessed
the impact of smells on code quality and clearly indicate their
negative impact on maintainability, including a higher bug-
proneness of components affected by code smells. In this paper we
capture previous findings on bug-proneness to build a specialized
bug prediction model for smelly classes. Specifically, we evaluate
the contribution of a measure of the severity of code smells (i.e.,
code smell intensity) by adding it to existing bug prediction
models and comparing the results of the new model against
the baseline model. Results indicate that the accuracy of a bug
prediction model increases by adding the code smell intensity
as predictor. We also evaluate the actual gain provided by the
intensity index with respect to the other metrics in the model,
ding the ones used to compute the code smell intensity.
rve that the intensity index is much more important
to other metrics used for predicting the buggyness

TAKE AWAYS - GEN

|
.
1
|
1
'?
|
R
|

symptoms

prediction model can contribute to the correct classification of
the buggyness of such a component. To verify this conjecture,
we use the intensity index (i.e., a metric able to estimate the
severity of a code smell) defined by Arcelli Fontana et al. [31]
to build a bug prediction model that takes into account the
presence and the severity of design problems affecting a code
component. Specifically, we evaluate the predictive power of
the intensity index by adding it in a bug prediction model
based on structural quality metrics [32], and comparing its
accuracy against the one achieved by the baseline model on
six large Java open source systems. We also quantified the gain
provided by the addition of the intensity index with respect
to the other structural metrics in the model, including the
ones used to compute the intensity. Finally, we report further
analyses aimed at understanding (i) the accuracy of a model

P

The magnitude of a phenomenon might change based on the
the angle from what you observe it

Intensity more important than mere presence/absence of

W

N SPRER-

I8

;: - - ’::5
’ L

-k et —

Smell intensity more
important than other
metrics for

predicting
fault-proneness

-RAL




