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during the early 1950s. The earliest product of this group’s programming languages are now described with some type of

efforts was a high-level language for scientific and technical com-

formal syntactic definition.

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose
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Ci ional progr ing are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the pl hinery of proced
declarations to b generally applicable. Combini
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

‘Communications August 1978
of Volume 21
the ACM Number 8

1977 ACM Turing Award
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Analysis of Functional Programs to Detect
Run-Time Garbage Cells

KATSURO INOUE
University of Hawaii at Manoa, Honolulu
and
HIROYUKI SEKI and HIKARU YAGI
Osaka University, Osaka

We propose a method for detecting the generation of garbage cells by analyzing a source text written
in a functional programming language which uses ordinary linked lists to implement list-type values.
For a subexpression such as F(G( - - -)) in a program where the function values of F and G are of list
type, if a cell c is created during the computation of G and if ¢ does not appear in a list-type value of

M. Frechtling McAtniMeas iy ing) F, then ¢ becomes a garbage cell at the end of the computation of F. We discuss this problem on the
(25 pages)  P.H.W.Leong Sensitivity to Rounding Error N . . .
with Monte Carlo Programming basis of formal languages derived from the functional program text and show some sufficient
" conditions that predict the generation of garbage cells. Also, we give an efficient algorithm to detect
M. Patrignani Secure Compilation to Protected o h h ) y N
(S0pages)  P.Agten Module Architectures at compile time the generation of garbage cells which are linearly linked. We have implemented these
iy algorithms in an experimental LISP system. By executing several sample programs on the system,
D. Clarke we conclude that our method is effective in detecting the generation of garbage cells.
F. Piessens
Ay e e Categories and Subject Descriptors: D.3.2 [Progr: ing I ]J: L Classifications—
W erification of a Cryptographic Primitive: SHA- o . R
(31 pages) = s applicative languages; D.3.4 [Progr: ng La ]: Pro o P ion; E.2 [Data):
Data Storage Repr ions—linked representation

General Terms: Languages, Performance

Additional Key Words and Phrases: Created occurrences, garbage collection, noninherited
occurrences

Association for 1. INTRODUCTION

Computing Machinery

Much attention is now focused on functional programming languages because of
their mathematical elegance. As a result, studies have been conducted on the
implementation of functional languages. Since garbage collection is one of the
most expensive processes in many implementations, numerous garbage collection
aloarithme have heen nrannced and actnially imnlomented [5]. However, little has

cting the generation of

() ()
reration of such cells in
| functional program. A

MAULLIULS LUI1TAIL QUL TSSO, A/CpPal LIS UL auu iences, Faculty of Engineering
Science, Osaka University, Toyonaka, Osaka, 560, Japan.

Advancing Computing as a Science & Profession
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SOFTWARE PROCESSES ARE SOFTWARE TOO

Leon Osterweil

University of Colorado Boulder, Colorado USA

1. The Nature of Process.

The major theme of this meeting is the exploration of the
importance of .ul process as a vehicle for improving both the
quality of software products and the the way in which we
develop and evolve them. In beginning this exploration it
seems important to spend at least a short time examining the
nature of process and convincing ourselves that this is indeed
a promising vehicle.

We shall take as our elementary notion of a process that it is
a systematic approach to the creation of a product or the
accomplishment of some task. We observe that thns charac-
terization describes the notion of =272 2 s manta e d e

operating systems-- namely that a
task executing on a single computi 1 : 2 4 3
zation is much broader, however,

used to carry out work or achieve a guai ui an viuvizy way.
Our processes need not even be executable on a computer.

It is important for us to recognize that the notion of process is

description defines a class or set of objects related to each
other by virtue of the fact that they are all activities which
follow the dictated behavior. We shall have reason to return
to this point later in this presentation.
For now we should return to our consideration of the intui-
tive notion of process and study the important ramifications
of the observations that 1) this notion is widespread and 2)
exploitation of it is done very effectively by humans.
Processes are used to effect generalized, indirect problem
solving. The essence of the process exploitation paradigm
seems to be that humans solve problems by creating process
descriptions and then instantiating processes to solve indivi-
dual problems Rather than repetitively and directly solving
‘toctfmsteeeoe oS oot humans prefer to create
ions and make them available

citations « -« v

One significant danger in this approach is that the process
itself is a dynamic entity and the process description is a
static entity. Further, the static process description is often
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SDA: A Novel Approach to Software Environment
Design and Constructiont

Kouichi Kishida* , Takuya Katayama¥, Masatoshi Matsuo®, Isao Miyamoto'T,
Koichiro Ochimizu**, Nobuo Saito##, John H. Saylerttt, Koji Torii***, Lloyd G. Williams##

Abstract

A Software Designer's Associate (SDA) is a workstation-
based collection of tools which support: 1) the description,
evaluation and comparison of software system architectural
designs, and 2) cooperation among, and management of, a
team of software designers [Ridd87]. Each Software
Designer's Associate is a specific instance of a generic facility
which supports a team member's design activities, cooperation
among team members, and overall team management. It
provides a framework for the integration of rools supporting
the use of various notations within the context of a particular
set of technical and managerial methods. These tools,
notations and methods may be adapted to support the needs of
a particular project or the habits of an ind™ "' Aontoean e
selecting the particular tools to be added t

The Software Designer's Associate pro 2
involving a consortium Of researchers v svauvine wuw
industrial organizations in both Japan and the United States.
This paper describes the concept of Software Designer's
Associates and the cooperative, international project which is

6 citations

and several projects incorporate one or more of these
technologies. This paper describes one such effort, the
Software Designer's Associate project.

A Software Designer's Associate (SDA) is a workstation-
hased collection of tools which support: 1) the description,
evaluation and comparison of software system architectural
designs, and 2) cooperation among, and management of, a
team of software designers {Ridd87]. Each Software
Designer's Associate is a specific instance of a generic facility
which supports a team member's design activities, cooperation
among team members, and overall team management. It
provides a framework for the integration of tools supporting
the use of various notations within the context of a particular
inagerial methods. These tools,
y be adapted to support the needs of
habits of an individual developer by
's to be added to the generic facility.

A Software Designer's Associate may be viewed as a
specialized software environment, one whose facilities are

reactrmrteard ta ciinnart far nraliminary Aacrtaon arntivitiee Rarh

10



A Formal Adaptation Method for Process Descriptions

Katsuro [noue, Takeshi OGTHARA, Tohru Kikune, and Koji Torii

Department of Information and Computcr Sciences, Faculry of Engineering Science
Osaka University, Toyonaka, Osaka 560, Japan

Absiract

Reguirement Lo describing software development processes in
foemal mauwnces has been increased, and demand for altering
and iloring the process descripsions hus been cmerged, In
whis paper, we propose a functional ianguage PDL {Provess
Description Languuge), designed to describe vurious
development processes under a centain environment. To creac
and modify the POL scripls easily and cormectly, we propose a
method of stepwise refinement fraom abstract scripls into
voncrete seriprs. By this method, the abstract definitions of
softwure process flow and product flow miually given as
fanction definitions in PDL, ar¢ tn
definitions of the tool acdvations
on, We also discoss an archires
development environment (Adapt: :
Environment), which can be adupted in many ways [or
designer’s requirements.

29 citations

ICSE’89 Pittsburg, PA

taesm is generally litoited. However, the sofiware developers
may want to change Iheic working SDE's for various reasons.

For exampie, different development tasks will require
different sets of supporting lools, and differcnt developer
habits will require ditferent faciities of eools. Since these
differcnces are yuile extensive, it 15 unrealistic © consouct a
single system that will support all toals und all hahits. [c is
much mare eflective fo provide o 2eneric system that cun be
customized 10 meer the developer habits, taned to increase
id new tools, and ported 1o chunge
Nwure, according to the need of
acific developroent wsks [9).

These operattons to create a specific system from a genenc
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PROGRAM SLICING*

Mark Weiser

Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

Program slicing 1s a method used by experienc-

ed computer programmers for abstracting from pro-
grams. Starting from a subset of a program's be-
havior, slicing reduces that program to a minimal
form which still produces that behavior. The
reduced program, called a "slice", is an indepen-
dent program guaranteed to faithfully represent
the original program within the domain of the
specified subset of behavior.

Finding a slice is in general unsolvable. A
dataflow algorithm is presented for approximating
slices when the behavior subset is specified as
the values of a set of variables at a cratomont
Experimental evidence is presen
slices are used by programmers
Experience with two automatic s
summarized. New measures of pri
are suggested based on the organization ot a
program's slices.

v

KEYWORDS: debugging, program maintenance, soft-
ware tools, program metrics, human factors, data-

behavior is of interest. For instance, during
debugging a subset of pehavior is being corrected,
and in program modification or maintenance a sub-
set of behavior is being improved or replaced. In
these cases, a programmer starts from the program
behavior and proceeds to find and modify the cor-
responding portions of program code. Code not
having to do with behavior of interest is ignored.
Gould and Dronkowski (19/4) report programmers
behaving this way during debugging, and a further
confirmng experiment is presented below.

A programmer maintaining a large, unfamiliar
program would almost have to use this behavior-
first approach to the code. Understanding an en-
tiwa cietom to cboanco opnly a small piece would

>ince most program mainte-
4 346 Cltatlons ons other than the program
57 percent of programming

.tenance (Zelkowitz, Shaw,
and Gannon 1979) decompos1ng programs by behavior
must be a common occurence.

R A

Automatic slicing requires that behavior be
specified in a certain form. If the behavior of

CA
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Program Slicing

MARK WEISER

Abstract—Program slicing is a method for automatically decomposing
programs by analyzing their data flow and control flow. Starting from
a subset of a program’s behavior, slicing reduces that program to a min-
imal form which still produces that behavior. The reduced program,
called a “slice,” is an independent program guaranteed to represent faith-
fully the original program within the domain of the specified subset of
behavior.

Some properties of slices are presented. In particular, finding state-
ment-minimal slices is in general unsolvable, but using data flow analy-
sis is sufficient to find approximate slices. Potential applications include
automatic slicing tools for debugging and parallel processing of slices.

Index Terms—Data flow analysis, debugging, human factors, parallel
processing, program maintenance, program metrics, slicing, software
tools.

INTRODUCTION

ARGE computer programs must be

derstanding and manipulation by pt 1 O 8 7
decomposition is useful to people, but s '
position into procedures and abstract data types—are very use-
ful. Program slicing is a decomposition based on data flow and
control flow analysis.

A "™ 1 - ., " » PR | . N ., 1

DEFINITIONS

This section considers programs without procedure calls.
Procedures are discussed later. The first few definitions re-
view the standard definitions of digraph, flowgraph, and com-
putation in terms of state trajectory. Finally, a slice is defined
as preserving certain projections from state trajectories.

The next few definitions simply establish a terminology for
graphs, and restrict attention to programs whose control struc-
ture is single-entry single-exit (“hammock graphs™).

Definition: A digraph is a structure ¢4 .
of nodes and E is a set of edges in N X| soFTwARE
then n is an immediate predecessor of m
successor of n. A path from nto mofle

NUMBER 2

s e @)

A PUBLICATION OF THE IEEE col

pO:plz Y pk‘SUCh ?hat Do =N, Px =
a structui

citations ..

u pusi savan g vo wn vusns audesin V. 7
the initial node. If m and n are two nog

n if m is on every path from n, to n. ‘

I

Definition: A hammock graph is a str
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The Computer
for the 21st Century

Specialized elements of hardware and software,
connected by wires, radio waves and infrared, will be
so ubiquitous that no one will notice their presence

are those that disappear. They

weave themselves into the fabric
of everyday life until they are indistin-
guishable from it.

Consider writing, perhaps the first
information technology. The ability to
represent spoken language symbolical-
ly for long-term storage freed informa-
tion from the limits of individual mem-
ory. Today this technology is ubiqui-
tous in lndustrlallzed countries. Not

TSRS PO NP M St LY Ty 0. 1 eSS

T he most profound technologies

by Mark Weiser

is approachable only through complex
jargon that has nothing to do with the
tasks for which people use computers.
The state of the art is perhaps analo-
gous to the period when scribes had to
know as much about making ink or

baking clay as they did about writing.
The arcane aura that surrounds per-
sonal computers is not just a “user in-
terface” problem. My colleagues and I
at the Xerox Palo Alto Research Center
think that the idea of a “personal” com-
——ebnes 2hnnll 2 eenlnenlannd and that the
, dynabooks

14 066 citations -

on technolo-

ground presence of these products of gy. Such machines cannot truly make

W12onmarner barkmalacst ™ AAace At Rasrnttna

ronvmniiHrna oan intoaaral invicihile nart nf

The idea of integrating computers
seamlessly into the world at large runs
counter to a number of present-day
trends. “Ubiquitous computing” in this
context does not mean just computers
that can be carried to the beach, jun-
gle or airport. Even the most powerful
notebook computer, with access to a
worldwide information network, still
focuses attention on a single box. By
analogy with writing, carrying a super-
laptop is like owning just one very im-
portant book. Customizing this book,
even writing millions of other books,
does not begin to capture the real pow-
er of literacy.

Furthermore, although ubiquitous

computers may use sound and video
in additsinn tn tevt and oranhicre that

17
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Call-Mark Slicing: An Efficient and Economical Way of
Reducing Slice

Akira Nishimatsuf Minoru Jihira? Shinji Kusumoto! Katsuro Inoue!
I Graduate School of Engineering Science, t Graduate School of Information Science,
Osaka University Nara Institute of Science and Technology
1-3 Machikaneyama, Toyonaka, 8916-5, Takayama, Ikoma,
Osaka 560-8531, Japan Nara 630-0101, Japan
+81 6 6850 6571 +81 743 72 5236
{a-nisimt, kusumoto, inoue}@ics.es.osaka-u.ac.jp minoru-j@Qitc.aist-nara.ac.jp
ABSTRACT central theme of software engineering research and prac-
When we debug and maintain large software, it is very tice.

important to localize the scope of our concern to small
program portions. Program slicing is one of promising
techniques for identifying portions of interest There are
many research results on the program

static slice, which is a collection of pr 5 5 Cltat I ons > the difficulty of handling large
possibly affecting a particular variable s ciad; v sutiwale 10 vu woanse @ developer’s attention to specific

scope, but the resulting collections are often still lalge. parts of the program that are directly and indirectly 4g
A dynamic slice, which is a collection of executed pro- related to the developer’s concerns.

Various ways of analyzing large programs and extracting
abstracted information of the target software have been
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CCFinder: A Multilinguistic Token-Based
Code Clone Detection System
for Large Scale Source Code

Toshihiro Kamiya, Member, IEEE, Shinji Kusumoto, Member, IEEE, and Katsuro Inoue, Member, IEEE

Abstract—A code clone is a code portion in source files that is identical or similar to another. Since code clones are believed to reduce
the maintainability of software, several code clone detection techniques and tools have been proposed. This paper proposes a new
clone detection technique, which consists of the transformation of input source text and a token-by-token comparison. For its
implementation with several useful optimization techniques, we have developed a tool, named CCFinder, which extracts code clones in
C, C++, Java, COBOL, and other source files. As well, metrics for the code clones have been developed. In order to evaluate the
usefulness of CCFinder and metrics, we conducted several case studies where we applied the new tool to the source code of JDK,
FreeBSD, NetBSD, Linux, and many other systems. As a result, CCFinder has effectively found clones and the metrics have been able
to effectively identify the characteristics of the systems. In addition, we have compared the proposed technique with other clone
detection techniques.

Index Terms—Code clone, duplicated code, CASE tool, metrics, maintenance.

<+

1 INTRODUCTION
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4 _A metrics suite for object oriented design 1994 1817 865 1
5 Guidelines for conducting and reporting case study research in software engineering 2009 392 653 48
6  Aclassification and comparison framework for software architecture description 2000 973 649 7
languages
7 Empirical studies of agile software development: A systematic review 2008 423 604 34
8 Developing multi-agent systems: The Gaia methodology 2003 663 553 n
9  Adaptive service composition in flexible processes 2007 47 534 33
10 Two case studies of open source software development: Apache and Mozilla 2002 635 488 13
n Uppaal in a nutshell 1997 875 486 9
12 Graph drawing by force-directed placement 1991 1162 484 5
13 Coloured Petri nets and CPN Tools for modelling and validation of concurrent systems 2007 387 484 52
14 KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera 201 181 453 -
15 Search-based software test data generation: A survey 2004 488 444 20
16 Data mining static code attributes to learn defect predictors 2007 329 411 7
17 The pragmatics of model-driven development 2003 475 396 25
18 A systematic review of software development cost estimation studies 2007 303 379 87
19 Anintrusion-detection model 1987 1055 377 6
20 Preliminary guidelines for empirical research in software engineering 2002 487 375 21
21 Understanding code mobility 1998 627 369 14
CCFinder: A multilinguistic token-based code clone detection system for large scale 2002 479 368 24
source code
23 ASurvey of software refactoring 2004 401 365 43
24  Supporting controlled experimentation with testing techniques: An infrastructure and its 2005 354 354 62
potential impact
25 X10: An object-oriented approach to Non-Uniform Cluster Computing 2005 351 351 64
26 4+1view model of architecture 1995 698 349 10
27 Avalidation of object-oriented design metrics as quality indicators 1996 661 348 12
28 Ataxonomy and survey of grid resource management systems for distributed computing 2002 449 345 30
29  Anempirical study of speed and communication in globally distributed software 2003 414 345 38
development
30 Model-based performance prediction in software development: A survey 2004 379 345 54
31 The physics of notations: Toward a scientific basis for constructing visual notations in 2009 204 340 -
software engineering
32 Goal-oriented requirements engineering: A guided tour 2001 470 336 26
33 A complexity measure 1976 1204 334 B
34 Aformal basis for architectural connection 1997 600 333 16
35  DiamondTouch: A multi-user touch technology 2001 463 331 27
36  The FRACTAL component model and its support in Java 2006 295 328 97
37  The Palladio component model for model-driven performance prediction 2009 196 327 -
38 On the unification power of models 2005 322 322 78
39 Recovering traceability links between code and documentation 2002 401 308 44
40 Systematic literature reviews in software engineering - A systematic literature review 2009 185 308 -
a Empirical validation of object-oriented metrics on open source software for fault 2005 299 299 92
prediction
42 Ananalysis and survey of the development of mutation testing 201 19 298 -
43 Regression testing minimization, selection and prioritization: A survey 2012 89 297 -
44 Model checking programs 2003 352 293 63
45  Toward reference models for requirements traceability 2001 408 291 39
46 Program slicing 1984 903 291 8
47 Eliciting security requirements with misuse cases 2005 290 290 100
48 Dynamically discovering likely program invariants to support program evolution 2001 405 289 41
49 Benchmarking classification models for software defect prediction: A proposed 2008 202 289 -

!ramcwork Jnd novcl Ilndmgs
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Very-Large Scale Code Clone Analysis and Visualization of Open Source
Programs Using Distributed CCFinder: D-CCFinder

Simone Livieri' ~ Yoshiki Higo' =~ Makoto Matushita”  Katsuro Inoue

'Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail: {simone, y-higo, matusita, inoue}@ist.osaka-u.ac.jp

Abstract can analyze, in the ideal case, up to 5.2 million of lines of C
code in about 18 minutes on a PC-based workstation (Intel
The increasing performance-price ratio of computer ~ Xeon 2.8GHz CPU with 2 GB memory).

hardware makes possible tc . o yaper, we have chosen, as the analysis target,
at code clone analysis. Th 1 5 3 C |tat I On S on of open source software used for FreeBSD og
a distributed aporoach at laree-scaie coae cione Gnaivsis. wnerewnarer called “the FreeBSD tareet”). which consists
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Component Rank: Relative Significance Rank for Software Component Search

Katsuro Inoue ', Reishi Yokomori ', Hikaru Fujiwara’,
Tetsuo Yamamoto |7, Makoto Matsushita  and Shinji Kusumoto
T Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
i1 Japan Science and Technology Corporation, 4-1-8, Honmachi,
Kawaguchi, Saitama 332-8531, Japan
{inoue, yokomori. t-vamamt. matusita. kusumoto } @ist.osaka-u.ac.ip

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO.3, MARCH 2005 'SE,O 5
| Ranking Significance of Software Compc
Collections of alquy develope: %
tant resources for efficient developm B aS ed O n U S e R e | at I O n S

systems. In this paper, we propose ¢
ing software components, called Ci i y
on analyzing actual use relations ¢ Katsuro Inoue, Member, IEEE, Reishi Yokomori, Member, IEEE, Tetsuo Yamamoto, Me

Makoto Matsushita, and Shinji Kusumoto, Member, IEEE

(] o
c I t at I o n S \bstract—Collections of already developed programs are important resources for efficient development of reliable softwa

n this paper, we propose a novel graph-representation model of a software component library (repository), called comp
mode/ ThIS iS based on analyzin" antiinl Lienana ralatinne Af tha Aanmnanante and nrananatins tha ninqiﬁcance through tr
relations. Using the component re PARS-J and applie

Abstract

are rankea high. uUsing the Comi

[] (]
to various collections of Java files that are used more
As a result, software engineers I¢ I I ’ARS-J has been

companies, and has produced pr

Index Terms—Component rank, graph representation model, reuse models, program analysis, reusable libraries.

+
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1st International Workshop on Mining Software Repositories MSR
2004, Edinburg, Scotland, UK., 2004.

Organizers
Ahmed E. Hassan
Richard C. Holt
Audris Mockus
Program Committee
Harald Gall
Les Gasser
Daniel German

James Herbsleb
Katsuro Inoue
\ Philip Johnson
L S Dewayne Perry
W— /4

Andreas Zeller
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Where Does This Code Come from and Where Does It Go?
- Integrated Code History Tracker for Open Source Systems -

Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe
Osaka University
Osaka, Japan
{inoue, peixia, y-manabe}@ist.osaka-u.ac.jp

Abstract—When we reuse a code fragment in an open source
system, it is very important to know the history of the code,
such as the code origin and evolution. In this paper, we propose
an integrated approach to code history tracking for open source
repositories. This approach takes a query code fragment as
its input, and returns the code fragments containing the code
clones with the query code. It utilizes pubhcly avallable code
search engines as external resources
have designed and implemented a
Ichi Tracker. Using Ichi Tracker, we |
studies. These case studles show the auciowis anu uisvvnucus

Y L M D | P Y e

19 citations

Current software engineering tools do not provide suf-
ficient support to explore code history. To know the code
origin, we have to specify project names and/or URLSs. Also,
to know the code evolution, we have to understand the
interrelations of open source projects.

Code search engines such as Google Code Search [10]
>ry useful tools to explore open source
rigin and evolution of code. However,
engines only allows to get keywords

andlar Anda attethiiton oa {hote trmmatife ond $hatr vof1 1m0t
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Abstract: A code clone is a code portion in source files that is identical or similar to another.

Since code clones are believed to reduce the maintainability of software, several code clone

detection techniques and tools have been proposed. This paper proposes a new clone
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Multi-Project Software Engineering

Katsuro Inoue "*, Pankaj K. Garg ¥,
Hajimu Iida'f, Kenichi Matsumoto '"*, Koji Torii *

¥ Graduate School of Information Science and Technolo Osaka Umve
1ICSEC e "
, 1 gale Avenue, Sulte 201

and Technology, Nara 630- 0192 Japan
are Engineering) Project, Senri, O
-u.ac.jp, garg@zeesource n‘t
atumoto, torii } @is. alst-na

it Nara Institute of Scie
*EASE (Empmcal Appro,

e‘ Abstract

In various fields of computer science, rapidly grow-
ing hardware power, such as high-speed network, high-
performance CPU, huge disk capacity, and large memory
space, has been fruitfully harnessed. Examples of such
usage are large scale data and web mining, grid comput-
ing, and multimedia environments. We propose that such
rich hardware can also catapult software engineering to
the next level. Huge amounts of software engineering data
can be systematically collected and organized from tens of
thousands of projects inside organizations, or from outside
an organization through the Internet. The collected data

0% 8

useful Tor software engineering. A unique feature of soft-
ware products, however, is that the end product has virtu-
ally no physical manifestation. Hence, composing or taking
apart a software product has virtually no cost implications.
As aresult, software component reuse is a common practice
for code sharing among multiple projects.

We posit that “sharing” among software projects can be
extended beyond code or component sharing to more and
varied kinds of “knowledge” sharing. Such sharing can be
achieved using what we call multi-project software engi-
neering. Instead of narrowly engineering a product, or a
product family, an organization can undertake the responsi-
bility and benefits of engineering a large number of projects
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A sentence-matching method for automatic license
identification of source code files

ICSE 2010 Paper Notification [30] =ErL+

Prem Devanbu and Sebastian Uchitel <icse2010-papers-chairs@borbala.com>
A To dmg, y-manabe, inoue, icse2010-paper. |~

Dear Daniel, Yuki and Katsuro

een you that your paper,

has Thanks for your submission to ICSE 2010. W @ have to inform

is 1 "A sentence-matching method for automatic license identification of source code

alg files"

for een accepted for inclusion in the conference program. The

speé
source code files of Debian that highlight interesting facts
about the manner in which licenses are used by FOSS.

1. INTRODUCTION

Free and Open Source Software (FOSS) has become an
important source of reusable code [19]. To be able to reuse
a FOSS component an application (proprietary or FOSS)

ahn1lld caticfr all +he reailiremente and ~coanditiane +hat +hoe

One of the major challenges of intellectual property clear-
ance is to identify the license under which a FOSS compo-
nent, and each of its files, is made available. This is due
to several factors: 1) there is a vast number of open source
licenses, some approved by the Open Source Initiative (cur-
rently 65), and many more that are not—Table 1 shows
some frequent FOSS licenses and their abbreviations, as used
in this paper; 2) a FOSS product might be made available
under several licenses. 3) different versions of a FOSS com-
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Computer Science > Digital Libraries Download:
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Table 5 Comparison of Average Amount of Cash Awards* for a Paper Published in Selected Journals
(2008-2016)

2008 2009 2010 2011 2012 2013 2014 2015 2016

Nature, Science  $26,212 $26,006 $25,781 $25,365 $33,990 536,658 $38,908 $43,783 $43,783
PNAS $3,156  $3,025 $3,353  S$3,443  $3,664 $3,619 $3,751  $3,513  $3,513
PLOS One $1,096 $1,086  $1,035 $994 $991 $915 $941 $984 $984
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Journal of

$1,408  $1,408

Documentation >1,082 »1,087 . 1 . $ 1 00 ? »1,329
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