$3/70b7x7 IR

ABKE XERIFREFHARE/
EREMS AT HEmkAmzEme

L 5 BB

'%3V7h717 TR &I

Hhx —

BRHh77770nRICEHHR
- # LOFHROIRYEY

- RQ1: ¥BV/7h7x7IFHREF? S?ja‘%?“

- RQ2: ES5ThIEHRBDDOHN? W
Q > y)r %'Gb

1978%F 5 BHMETEDHAEA

1999 IEEE Claude E. Shannon Award

- TR, 5
- e sUAYIREE. IHERAR
«)77 RRIRIR

- 2107055 L5 EE

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

19815 1w

. D4CKUS NCAUCU @ SIIAl 1DM EIOUp Il INCW I UIK Uity WIgely USeU Programiming Ianguages I e WU, ALNOSL an
during the early 1950s. The earliest product of this group’s programming languages are now described with some type of

efforts was a high-level language for scientific and technical com-

formal syntactic definition.

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM’s copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing hinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific

as does rep or ic or multiple

P P
tion.

Author’s address: 91 Saint Germain Ave., San Francisco, CA
94114.

© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Ci ional progr ing are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the pl hinery of proced
declarations to b generally applicable. Combini
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

‘Communications August 1978
of Volume 21
the ACM Number 8

1977 ACM Turing Award

S EEDJohn BackushH iz
RIEAPBEZRDI 2
V)2 {ER

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

1984%F HIMw

IMPLEMENTATIONS OF FUNCTIONAL PROGRAMMING LANGUAGES

Katsuro Inoue

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

IO
<
ind Ao

INDALTHD2ER DR

Analysis of Functional Programs to Detect
Run-Time Garbage Cells

KATSURO INOUE
University of Hawaii at Manoa, Honolulu
and
HIROYUKI SEKI and HIKARU YAGI
Osaka University, Osaka

We propose a method for detecting the generation of garbage cells by analyzing a source text written
in a functional programming language which uses ordinary linked lists to implement list-type values.
For a subexpression such as F(G(- - -)) in a program where the function values of F and G are of list
type, if a cell c is created during the computation of G and if ¢ does not appear in a list-type value of

M. Frechtling McAtniMeas iy ing) F, then ¢ becomes a garbage cell at the end of the computation of F. We discuss this problem on the
(25 pages) P.H.W.Leong Sensitivity to Rounding Error N . . .
with Monte Carlo Programming basis of formal languages derived from the functional program text and show some sufficient
" conditions that predict the generation of garbage cells. Also, we give an efficient algorithm to detect
M. Patrignani Secure Compilation to Protected o h h) y N
(S0pages) P.Agten Module Architectures at compile time the generation of garbage cells which are linearly linked. We have implemented these
iy algorithms in an experimental LISP system. By executing several sample programs on the system,
D. Clarke we conclude that our method is effective in detecting the generation of garbage cells.
F. Piessens
Ay e e Categories and Subject Descriptors: D.3.2 [Progr: ing I]J: L Classifications—
W erification of a Cryptographic Primitive: SHA- o . R
(31 pages) = s applicative languages; D.3.4 [Progr: ng La]: Pro o P ion; E.2 [Data):
Data Storage Repr ions—linked representation

General Terms: Languages, Performance

Additional Key Words and Phrases: Created occurrences, garbage collection, noninherited
occurrences

Association for 1. INTRODUCTION

Computing Machinery

Much attention is now focused on functional programming languages because of
their mathematical elegance. As a result, studies have been conducted on the
implementation of functional languages. Since garbage collection is one of the
most expensive processes in many implementations, numerous garbage collection
aloarithme have heen nrannced and actnially imnlomented [5]. However, little has

cting the generation of

() ()
reration of such cells in
| functional program. A

MAULLIULS LUI1TAIL QUL TSSO, A/CpPal LIS UL auu iences, Faculty of Engineering
Science, Osaka University, Toyonaka, Osaka, 560, Japan.

Advancing Computing as a Science & Profession

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

1986F KRAXZFICRVEERHREA

RBEREBRTE

e TXAIN—PI AT L
- BE7O95L4

- HRIRIE

e JY7b2x770tR

ICSE’87, Monterey, €A

SOFTWARE PROCESSES ARE SOFTWARE TOO

Leon Osterweil

University of Colorado Boulder, Colorado USA

1. The Nature of Process.

The major theme of this meeting is the exploration of the
importance of .ul process as a vehicle for improving both the
quality of software products and the the way in which we
develop and evolve them. In beginning this exploration it
seems important to spend at least a short time examining the
nature of process and convincing ourselves that this is indeed
a promising vehicle.

We shall take as our elementary notion of a process that it is
a systematic approach to the creation of a product or the
accomplishment of some task. We observe that thns charac-
terization describes the notion of =272 2 s manta e d e

operating systems-- namely that a
task executing on a single computi 1 : 2 4 3
zation is much broader, however,

used to carry out work or achieve a guai ui an viuvizy way.
Our processes need not even be executable on a computer.

It is important for us to recognize that the notion of process is

description defines a class or set of objects related to each
other by virtue of the fact that they are all activities which
follow the dictated behavior. We shall have reason to return
to this point later in this presentation.
For now we should return to our consideration of the intui-
tive notion of process and study the important ramifications
of the observations that 1) this notion is widespread and 2)
exploitation of it is done very effectively by humans.
Processes are used to effect generalized, indirect problem
solving. The essence of the process exploitation paradigm
seems to be that humans solve problems by creating process
descriptions and then instantiating processes to solve indivi-
dual problems Rather than repetitively and directly solving
‘toctfmsteeeoe oS oot humans prefer to create
ions and make them available

citations « -« v

One significant danger in this approach is that the process
itself is a dynamic entity and the process description is a
static entity. Further, the static process description is often

ICSE’88, Singapore
SDA: A Novel Approach to Software Environment
Design and Constructiont

Kouichi Kishida* , Takuya Katayama¥, Masatoshi Matsuo®, Isao Miyamoto'T,
Koichiro Ochimizu**, Nobuo Saito##, John H. Saylerttt, Koji Torii***, Lloyd G. Williams##

Abstract

A Software Designer's Associate (SDA) is a workstation-
based collection of tools which support: 1) the description,
evaluation and comparison of software system architectural
designs, and 2) cooperation among, and management of, a
team of software designers [Ridd87]. Each Software
Designer's Associate is a specific instance of a generic facility
which supports a team member's design activities, cooperation
among team members, and overall team management. It
provides a framework for the integration of rools supporting
the use of various notations within the context of a particular
set of technical and managerial methods. These tools,
notations and methods may be adapted to support the needs of
a particular project or the habits of an ind™ "' Aontoean e
selecting the particular tools to be added t

The Software Designer's Associate pro 2
involving a consortium Of researchers v svauvine wuw
industrial organizations in both Japan and the United States.
This paper describes the concept of Software Designer's
Associates and the cooperative, international project which is

6 citations

and several projects incorporate one or more of these
technologies. This paper describes one such effort, the
Software Designer's Associate project.

A Software Designer's Associate (SDA) is a workstation-
hased collection of tools which support: 1) the description,
evaluation and comparison of software system architectural
designs, and 2) cooperation among, and management of, a
team of software designers {Ridd87]. Each Software
Designer's Associate is a specific instance of a generic facility
which supports a team member's design activities, cooperation
among team members, and overall team management. It
provides a framework for the integration of tools supporting
the use of various notations within the context of a particular
inagerial methods. These tools,
y be adapted to support the needs of
habits of an individual developer by
's to be added to the generic facility.

A Software Designer's Associate may be viewed as a
specialized software environment, one whose facilities are

reactrmrteard ta ciinnart far nraliminary Aacrtaon arntivitiee Rarh

10

A Formal Adaptation Method for Process Descriptions

Katsuro [noue, Takeshi OGTHARA, Tohru Kikune, and Koji Torii

Department of Information and Computcr Sciences, Faculry of Engineering Science
Osaka University, Toyonaka, Osaka 560, Japan

Absiract

Reguirement Lo describing software development processes in
foemal mauwnces has been increased, and demand for altering
and iloring the process descripsions hus been cmerged, In
whis paper, we propose a functional ianguage PDL {Provess
Description Languuge), designed to describe vurious
development processes under a centain environment. To creac
and modify the POL scripls easily and cormectly, we propose a
method of stepwise refinement fraom abstract scripls into
voncrete seriprs. By this method, the abstract definitions of
softwure process flow and product flow miually given as
fanction definitions in PDL, ar¢ tn
definitions of the tool acdvations
on, We also discoss an archires
development environment (Adapt: :
Environment), which can be adupted in many ways [or
designer’s requirements.

29 citations

ICSE’89 Pittsburg, PA

taesm is generally litoited. However, the sofiware developers
may want to change Iheic working SDE's for various reasons.

For exampie, different development tasks will require
different sets of supporting lools, and differcnt developer
habits will require ditferent faciities of eools. Since these
differcnces are yuile extensive, it 15 unrealistic © consouct a
single system that will support all toals und all hahits. [c is
much mare eflective fo provide o 2eneric system that cun be
customized 10 meer the developer habits, taned to increase
id new tools, and ported 1o chunge
Nwure, according to the need of
acific developroent wsks [9).

These operattons to create a specific system from a genenc

70tAHE

1990FERICAOTH L
- WABWNWALTOCAERSEE

- 70 AETIRIE

12

International Software Process Workshop

- HEROS® (Napa, ...)

- 20-30RIEENDZSINE
- Osterweil, Balzer, FILSE. .

7”'&1@55%\ IIEI—If Erf\lf Xannns °e
- BRIE1:BRIZEAERETEY ...

13

9CLEO>BENLIECER =00\

I DY—=IVE =\ 15

14

ICGSE’81 San Diego,

PROGRAM SLICING*

Mark Weiser

Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

Program slicing 1s a method used by experienc-

ed computer programmers for abstracting from pro-
grams. Starting from a subset of a program's be-
havior, slicing reduces that program to a minimal
form which still produces that behavior. The
reduced program, called a "slice", is an indepen-
dent program guaranteed to faithfully represent
the original program within the domain of the
specified subset of behavior.

Finding a slice is in general unsolvable. A
dataflow algorithm is presented for approximating
slices when the behavior subset is specified as
the values of a set of variables at a cratomont
Experimental evidence is presen
slices are used by programmers
Experience with two automatic s
summarized. New measures of pri
are suggested based on the organization ot a
program's slices.

v

KEYWORDS: debugging, program maintenance, soft-
ware tools, program metrics, human factors, data-

behavior is of interest. For instance, during
debugging a subset of pehavior is being corrected,
and in program modification or maintenance a sub-
set of behavior is being improved or replaced. In
these cases, a programmer starts from the program
behavior and proceeds to find and modify the cor-
responding portions of program code. Code not
having to do with behavior of interest is ignored.
Gould and Dronkowski (19/4) report programmers
behaving this way during debugging, and a further
confirmng experiment is presented below.

A programmer maintaining a large, unfamiliar
program would almost have to use this behavior-
first approach to the code. Understanding an en-
tiwa cietom to cboanco opnly a small piece would

>ince most program mainte-
4 346 Cltatlons ons other than the program
57 percent of programming

.tenance (Zelkowitz, Shaw,
and Gannon 1979) decompos1ng programs by behavior
must be a common occurence.

R A

Automatic slicing requires that behavior be
specified in a certain form. If the behavior of

CA

15

352

TSE °84

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 4, JULY 1984

Program Slicing

MARK WEISER

Abstract—Program slicing is a method for automatically decomposing
programs by analyzing their data flow and control flow. Starting from
a subset of a program’s behavior, slicing reduces that program to a min-
imal form which still produces that behavior. The reduced program,
called a “slice,” is an independent program guaranteed to represent faith-
fully the original program within the domain of the specified subset of
behavior.

Some properties of slices are presented. In particular, finding state-
ment-minimal slices is in general unsolvable, but using data flow analy-
sis is sufficient to find approximate slices. Potential applications include
automatic slicing tools for debugging and parallel processing of slices.

Index Terms—Data flow analysis, debugging, human factors, parallel
processing, program maintenance, program metrics, slicing, software
tools.

INTRODUCTION

ARGE computer programs must be

derstanding and manipulation by pt 1 O 8 7
decomposition is useful to people, but s '
position into procedures and abstract data types—are very use-
ful. Program slicing is a decomposition based on data flow and
control flow analysis.

A "™ 1 - ., " » PR | . N ., 1

DEFINITIONS

This section considers programs without procedure calls.
Procedures are discussed later. The first few definitions re-
view the standard definitions of digraph, flowgraph, and com-
putation in terms of state trajectory. Finally, a slice is defined
as preserving certain projections from state trajectories.

The next few definitions simply establish a terminology for
graphs, and restrict attention to programs whose control struc-
ture is single-entry single-exit (“hammock graphs™).

Definition: A digraph is a structure ¢4 .
of nodes and E is a set of edges in N X| soFTwARE
then n is an immediate predecessor of m
successor of n. A path from nto mofle

NUMBER 2

s e @)

A PUBLICATION OF THE IEEE col

pO:plz Y pk‘SUCh ?hat Do =N, Px =
a structui

citations ..

u pusi savan g vo wn vusns audesin V. 7
the initial node. If m and n are two nog

n if m is on every path from n, to n. ‘

I

Definition: A hammock graph is a str

Scientific American’9I1

The Computer
for the 21st Century

Specialized elements of hardware and software,
connected by wires, radio waves and infrared, will be
so ubiquitous that no one will notice their presence

are those that disappear. They

weave themselves into the fabric
of everyday life until they are indistin-
guishable from it.

Consider writing, perhaps the first
information technology. The ability to
represent spoken language symbolical-
ly for long-term storage freed informa-
tion from the limits of individual mem-
ory. Today this technology is ubiqui-
tous in lndustrlallzed countries. Not

TSRS PO NP M St LY Ty 0. 1 eSS

T he most profound technologies

by Mark Weiser

is approachable only through complex
jargon that has nothing to do with the
tasks for which people use computers.
The state of the art is perhaps analo-
gous to the period when scribes had to
know as much about making ink or

baking clay as they did about writing.
The arcane aura that surrounds per-
sonal computers is not just a “user in-
terface” problem. My colleagues and I
at the Xerox Palo Alto Research Center
think that the idea of a “personal” com-
——ebnes 2hnnll 2 eenlnenlannd and that the
, dynabooks

14 066 citations -

on technolo-

ground presence of these products of gy. Such machines cannot truly make

W12onmarner barkmalacst ™ AAace At Rasrnttna

ronvmniiHrna oan intoaaral invicihile nart nf

The idea of integrating computers
seamlessly into the world at large runs
counter to a number of present-day
trends. “Ubiquitous computing” in this
context does not mean just computers
that can be carried to the beach, jun-
gle or airport. Even the most powerful
notebook computer, with access to a
worldwide information network, still
focuses attention on a single box. By
analogy with writing, carrying a super-
laptop is like owning just one very im-
portant book. Customizing this book,
even writing millions of other books,
does not begin to capture the real pow-
er of literacy.

Furthermore, although ubiquitous

computers may use sound and video
in additsinn tn tevt and oranhicre that

17

ICSE°99 Los Angeles, CA

Call-Mark Slicing: An Efficient and Economical Way of
Reducing Slice

Akira Nishimatsuf Minoru Jihira? Shinji Kusumoto! Katsuro Inoue!
I Graduate School of Engineering Science, t Graduate School of Information Science,
Osaka University Nara Institute of Science and Technology
1-3 Machikaneyama, Toyonaka, 8916-5, Takayama, Ikoma,
Osaka 560-8531, Japan Nara 630-0101, Japan
+81 6 6850 6571 +81 743 72 5236
{a-nisimt, kusumoto, inoue}@ics.es.osaka-u.ac.jp minoru-j@Qitc.aist-nara.ac.jp
ABSTRACT central theme of software engineering research and prac-
When we debug and maintain large software, it is very tice.

important to localize the scope of our concern to small
program portions. Program slicing is one of promising
techniques for identifying portions of interest There are
many research results on the program

static slice, which is a collection of pr 5 5 Cltat I ons > the difficulty of handling large
possibly affecting a particular variable s ciad; v sutiwale 10 vu woanse @ developer’s attention to specific

scope, but the resulting collections are often still lalge. parts of the program that are directly and indirectly 4g
A dynamic slice, which is a collection of executed pro- related to the developer’s concerns.

Various ways of analyzing large programs and extracting
abstracted information of the target software have been

——ii X

7 4 =) FLAFFEIC BT 2707 5 L AT 4 AD IS
it (LT N o1 WiAd pit 513

[}/

——iiii 3

RSN Z-BERZ W70 s 7 L8R5 4 2 v T FEORE

ralH BAL

— X

JEE SEpgT KA et P T

A7 A ZGtRAELD D DT 1l T MEES 7 7 D RERIE
KA st Wi ikt Mgy @b JRL sEghif

Node Merging Method of Program Dependence Graph for Efficient Slice Compu-

tation

Fumiaki OHATA', Reishi YOKOMORI', Akira NISHIMATS U and Katsuro
INOUE®-f#t

HBS5FL Tl Fuidliy 57 (PDG) Eix7ns 5 L XMoliilFEEZ £ 57 ThY, 7ur 5

LAFAACHNEN S, ChETREZINTVEELDPDC WiRLZ, 254 AOKEN 1 2ZHEELTZ
7. L, KB 7 b7 2 7IC A5 4 A2lNT 280, ZORERZ G T EoMEL2 ST 2 45808
5.
AWETIE, BRSO TR EIN B TERTIEICHL, XD KELPIETHRITZE 5 2 L Th¥n L2
iz, FEERCHREL 72 PDG WERTFILZEEET 5. 7, JPRCPET LDz T, EMa Ak 10 -
10%, Willa A b 5 - 60%DMMk%Z £47-.

F—T—K TOVSLATAR, Tl LT 57, HE, KK

Polsila®s 2 £ D oo BBBEBE L RoBENE B Slr 288¢ R B ol > 2 P e e e e

7095 LAZ1ADIR5E

» KA 28R, BEIMBITLESNOVTLUVESE
+ Ar—2E)T1DR SR

- REANEY—-IVORFE. AFLAEW

20

m bl S/ dm Eag 7 1

- 1999F I3, BRODAEDHERHE >N T

- AFICEBR—a-FOERORF (BT, 20FELI LEE)
- WWTERWD, AT

- L <OHDIA- R, P ATLIEHO/=H. KA ?

- BRTIESS |

- EPRHOKBEICOWERETZ NIV X LEATESS

- NI)—HINDFE

21

o0—- Y —)V CCFinderd) R H

Free BSD Linux Net BSD

| i

0 1e+0086 2e+106 3e+006 4e+006 Se+006 Be+006 7e+006

— 0 T T T T T T T
"Q
-~
I %
al| 1e+006 X
3 3
2 v,
= faotrys
A *
S 1
2e+006 R
ity I
. . b
t §° e
. g . 34 B
34006 F - ° T+ e e
v . nf 'y i,_
. ' : * Te. 8.
x . sririeid i ::1 t A »El 3
5 i PRETRITGR e 0 t",.. "-’-'.o Ut
- . . :
e ey VB | e sty T
4e+006 | cose s mmgit s X
e . s y Pewmbh G L e vy
LR AR g, N ",
.« ¥ .
L i LR R "
— | RATIRS: A b1< -7 A B
2 B3 s Mol Bl lint
b-.‘t! - - x" - + .. k: . .
. e ’ . - . . . -
Se+06 #*'% oy ge g,l.m . >
«d L2 . . & Hoth:
S R O s T i
TR : T IR : o X o 4
{ k254 Y}. o e 3
b4 T4 0 sed . 3
a . K< SRRt h . .
) b 38 -t”‘% 1% : . . PR ER .
@l ge+lls [!?‘1 g ; : R 3
) [S " # T . e - :
=z ., WU E. . . i R 2k »
S Rl MRS eed 1 [v e 0y 3 L [OTRRe S BRUEL
.o, s 0 o s SRR IS S A
L’." & g,q B .o e .t ARt
AT < F ik e PRt i - 3 e
R .. H . . . ; "l; toat e a0 e b
7e+006 B, e R L3 Y. SRR “, ¥

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

TS5, TSE. &BZS |

- 20005F7R mAIDIRE

- 2001%E18 Major RevisiondZE 3k
- 20014E8A Minor Revision®E 3k
- 20015947 HRixEH

- 20025 7R TSEICIgSk

TSE’O2

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.7, JULY 2002

CCFinder: A Multilinguistic Token-Based
Code Clone Detection System
for Large Scale Source Code

Toshihiro Kamiya, Member, IEEE, Shinji Kusumoto, Member, IEEE, and Katsuro Inoue, Member, IEEE

Abstract—A code clone is a code portion in source files that is identical or similar to another. Since code clones are believed to reduce
the maintainability of software, several code clone detection techniques and tools have been proposed. This paper proposes a new
clone detection technique, which consists of the transformation of input source text and a token-by-token comparison. For its
implementation with several useful optimization techniques, we have developed a tool, named CCFinder, which extracts code clones in
C, C++, Java, COBOL, and other source files. As well, metrics for the code clones have been developed. In order to evaluate the
usefulness of CCFinder and metrics, we conducted several case studies where we applied the new tool to the source code of JDK,
FreeBSD, NetBSD, Linux, and many other systems. As a result, CCFinder has effectively found clones and the metrics have been able
to effectively identify the characteristics of the systems. In addition, we have compared the proposed technique with other clone
detection techniques.

Index Terms—Code clone, duplicated code, CASE tool, metrics, maintenance.

<+

1 INTRODUCTION

CCFinder®i X NI

TSE 200278 5i8%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 202 2013 2014 2015 206 2017

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University 25

SERETHHS

Highly-cited papers

Vahid Garousi**, Joio M.

p Dy
1o ALGOY

' Seftwure Engineer ing Resewrch
* Deparement of formatics / ¢

AKTICLE INYF
Article history:

Revesved 27 May 2015
Revised 11 November 2015
Accepied 11 Novenbe: 15
Available online 23 Nowember 2015

Keywords

Sofrware engineering
Haghly-cited papers
Top
Mast ¢
Maost frequentddy cited
Bbliometrics

eed

BHEOE @1

Table 6
Top- 100 papers by total number of citations
E Title Year Cited by
1 A metrics suite for object oriented design 1994 1817
2 QoS-aware middleware for Web services composition 2004 1696
3 The model checker SPIN 1997 1669
4 Complexity measure 1976 1304
5 Graph drawing by force-directed placement 1991 1162
6 An intrusion-detection model 1987 1055
7 Adassification and comparison framework for software architecture description 2000 973
languages
8 Program slicing 1984 903
9 TUppaalin a nutshell 1997 875
10 4+ 1 view model of architecture 1995 698
1n Developing multi-agent systems: The Gaia methodology 2003 663
12 Avalidation of object-oriented design metrics as quality indicators 1996 661
13 Two case studies of open source software development: Apache and Mozilla 2002 635
14 Understanding code mobility 1998 627
15 Reverse engineering and design recovery: A taxonomy 1990 605
16 A formal basis for architectural connection 1997 600
17 Software risk management: Principles and practices 1991 598
18 Towards modelling and reasoning support for early-phase requirements 1997 494
engineering
19 Modeling and verification of time dependent systems using time Petri nets 1991 490
20 Search-based software test data generation: A survey 2004 488
21 Preliminary guidelines for empirical research in software engineering 2002 487
22 Testing software design modeled by finite-state machines 1978 486
23 The STATEMATE semantics of Statecharts 1996 482

CCFinder: A multilinguistic token-based code clone detection
scale source code

25 Thepragmatics of model-driven development

26 Goal-oriented requirements engineering: A guided tour

27 DiamondTouch: A multi-user touch technology

28 Software function, source lines of code, and development effort prediction: a

software science validation
29 FORM: A feature-oriented reuse method with domain-specific reference
architectures

30 A taxonomy and survey of grid resource management systems for distributed

computing
3 Discovering models of software processes from event-based data
32 A critical success factors model for ERP implementation
33 Adaptive service composition in flexible processes
34 Fmpnncal studies of agile software dwelopmem' A systematic review

ngineering

35 h visualization sy gem and i hmnons o so{

36 A 3§ appr na i, esngn

37 A criti de[

38 Anem nc bally difributed software

development
39 Toward reference models for requirements traceability
40 Object-oriented metrics that predict maintainability

41 Dynamically discovering likely program invariants to support program evolution

42 HyTech: A model checker for hybrid systems
443 A survey of software refactoring
44 Recovering traceability links between code and documentation

45 The Tame project: Towards improvement-oriented software environments

46 Patterns in property specifications for finite-state verification

9 System structure for software fault tolerance

48 Guidelines for conducting and reporting case study research in software
engineering

49 Prioritizing test cases for regression testing

50 Estimating software project effort using analogies

stem for large

2003
2001
2001
1983

1998

2002

1998
1999
2007
2008
2000
1997
1999
2003

2001
1993
2001
1997
2004
2002
1988
1999
1975
2009

2001
1997

449

434
432
427
423
a3
421
416
414

406
405

401
401
401
393
393
392

390
390

Table7
Top-100 papers by average annual number of citations.

Total Number of Citations

Title Year Citedby Annual average # in the other
1 QoS-aware middleware for Web services composition 2004 1696 1542 2
2 CloudSim: A toolkit for modeling and simulation of cloud computing environments and 20m n 928 56

evaluation of resource provisioning algorithms
3 The model checker SPIN 1997 1669 927 3
4 _A metrics suite for object oriented design 1994 1817 865 1
5 Guidelines for conducting and reporting case study research in software engineering 2009 392 653 48
6 Aclassification and comparison framework for software architecture description 2000 973 649 7
languages
7 Empirical studies of agile software development: A systematic review 2008 423 604 34
8 Developing multi-agent systems: The Gaia methodology 2003 663 553 n
9 Adaptive service composition in flexible processes 2007 47 534 33
10 Two case studies of open source software development: Apache and Mozilla 2002 635 488 13
n Uppaal in a nutshell 1997 875 486 9
12 Graph drawing by force-directed placement 1991 1162 484 5
13 Coloured Petri nets and CPN Tools for modelling and validation of concurrent systems 2007 387 484 52
14 KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera 201 181 453 -
15 Search-based software test data generation: A survey 2004 488 444 20
16 Data mining static code attributes to learn defect predictors 2007 329 411 7
17 The pragmatics of model-driven development 2003 475 396 25
18 A systematic review of software development cost estimation studies 2007 303 379 87
19 Anintrusion-detection model 1987 1055 377 6
20 Preliminary guidelines for empirical research in software engineering 2002 487 375 21
21 Understanding code mobility 1998 627 369 14
CCFinder: A multilinguistic token-based code clone detection system for large scale 2002 479 368 24
source code
23 ASurvey of software refactoring 2004 401 365 43
24 Supporting controlled experimentation with testing techniques: An infrastructure and its 2005 354 354 62
potential impact
25 X10: An object-oriented approach to Non-Uniform Cluster Computing 2005 351 351 64
26 4+1view model of architecture 1995 698 349 10
27 Avalidation of object-oriented design metrics as quality indicators 1996 661 348 12
28 Ataxonomy and survey of grid resource management systems for distributed computing 2002 449 345 30
29 Anempirical study of speed and communication in globally distributed software 2003 414 345 38
development
30 Model-based performance prediction in software development: A survey 2004 379 345 54
31 The physics of notations: Toward a scientific basis for constructing visual notations in 2009 204 340 -
software engineering
32 Goal-oriented requirements engineering: A guided tour 2001 470 336 26
33 A complexity measure 1976 1204 334 B
34 Aformal basis for architectural connection 1997 600 333 16
35 DiamondTouch: A multi-user touch technology 2001 463 331 27
36 The FRACTAL component model and its support in Java 2006 295 328 97
37 The Palladio component model for model-driven performance prediction 2009 196 327 -
38 On the unification power of models 2005 322 322 78
39 Recovering traceability links between code and documentation 2002 401 308 44
40 Systematic literature reviews in software engineering - A systematic literature review 2009 185 308 -
a Empirical validation of object-oriented metrics on open source software for fault 2005 299 299 92
prediction
42 Ananalysis and survey of the development of mutation testing 201 19 298 -
43 Regression testing minimization, selection and prioritization: A survey 2012 89 297 -
44 Model checking programs 2003 352 293 63
45 Toward reference models for requirements traceability 2001 408 291 39
46 Program slicing 1984 903 291 8
47 Eliciting security requirements with misuse cases 2005 290 290 100
48 Dynamically discovering likely program invariants to support program evolution 2001 405 289 41
49 Benchmarking classification models for software defect prediction: A proposed 2008 202 289 -

!ramcwork Jnd novcl Ilndmgs

en mmtetead — B AP P S SR S S SR S S

Average Annual Number of Citations

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

26

A—-koO— iR E REE

- 2002FE N 52007 FICHFTREMITI—-F 70— 53 E
HORHFERBETIEIT—HE

- ERTOFRAMLEEDE N

- BTN E . /—IWCCFinderM B E M _LICH#k
(GG D#HE I HEICS...)

- BLOEFREDH

t[FR TS, ERES

L [E #5896 (Samsung,

MS Research -> Xiao, Visual Studio®~0—> 3 #T#$RE)

ICSE°O7 Minneapolis, MN

Very-Large Scale Code Clone Analysis and Visualization of Open Source
Programs Using Distributed CCFinder: D-CCFinder

Simone Livieri' ~ Yoshiki Higo' =~ Makoto Matushita” Katsuro Inoue

'Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail: {simone, y-higo, matusita, inoue}@ist.osaka-u.ac.jp

Abstract can analyze, in the ideal case, up to 5.2 million of lines of C
code in about 18 minutes on a PC-based workstation (Intel
The increasing performance-price ratio of computer ~ Xeon 2.8GHz CPU with 2 GB memory).

hardware makes possible tc . o yaper, we have chosen, as the analysis target,
at code clone analysis. Th 1 5 3 C |tat I On S on of open source software used for FreeBSD og
a distributed aporoach at laree-scaie coae cione Gnaivsis. wnerewnarer called “the FreeBSD tareet”). which consists

. A-KO—Y DR SEVBL L, BE |
c YRS, BokT—2IEIR/SHBEL.
CRIZI-RRTRE |

- —-K7O0- O RDIERLE

- Google®Page RankDF;EICRKRIL. /727D
BaOEBRELFEULSICEE

29

J—R#%5%Y/—JVSPARS-J

1I€SE’O

Component Rank: Relative Significance Rank for Software Component Search

Katsuro Inoue ', Reishi Yokomori ', Hikaru Fujiwara’,
Tetsuo Yamamoto |7, Makoto Matsushita and Shinji Kusumoto
T Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
i1 Japan Science and Technology Corporation, 4-1-8, Honmachi,
Kawaguchi, Saitama 332-8531, Japan
{inoue, yokomori. t-vamamt. matusita. kusumoto } @ist.osaka-u.ac.ip

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO.3, MARCH 2005 'SE,O 5
| Ranking Significance of Software Compc
Collections of alquy develope: %
tant resources for efficient developm B aS ed O n U S e R e | at I O n S

systems. In this paper, we propose ¢
ing software components, called Ci i y
on analyzing actual use relations ¢ Katsuro Inoue, Member, IEEE, Reishi Yokomori, Member, IEEE, Tetsuo Yamamoto, Me

Makoto Matsushita, and Shinji Kusumoto, Member, IEEE

(] o
c I t at I o n S \bstract—Collections of already developed programs are important resources for efficient development of reliable softwa

n this paper, we propose a novel graph-representation model of a software component library (repository), called comp
mode/ ThIS iS based on analyzin" antiinl Lienana ralatinne Af tha Aanmnanante and nrananatins tha ninqiﬁcance through tr
relations. Using the component re PARS-J and applie

Abstract

are rankea high. uUsing the Comi

[] (]
to various collections of Java files that are used more
As a result, software engineers I¢ I I ’ARS-J has been

companies, and has produced pr

Index Terms—Component rank, graph representation model, reuse models, program analysis, reusable libraries.

+

30

B a1 T A 17 TIARN

SPARS-Jiw X D5 | A DR

5| % 51AIT 128

ICSE’ 03

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

w5 | A& 5|MT 182

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

TSE' 05

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University 31

70— ERBRD2DDIHR

20— N5

. ﬁ'\‘.ﬂ)&i ia%
- /—JVLCCFinder
- TSE, ICSE, MSR, ...
($#251>1,5003 1)
- =l DBLf. (R=TF
. iﬁ)ﬁtﬁﬁfxﬁﬂ(BHa. fthA
3]

IRBOHE

- 2003~

1B NRBHMHRESR

- EFTIVDIER., KR

- *J—JVLSPARS-J

- ICSE, TSE, ...

($#851>3003 1)

« LNDOHDDTAMER.
Web—EA

- AR ITIERBIZTLEL

32

Od—RigEEE->HFHMining Software RepositoriesA

1st International Workshop on Mining Software Repositories MSR
2004, Edinburg, Scotland, UK., 2004.

Organizers
Ahmed E. Hassan
Richard C. Holt
Audris Mockus
Program Committee
Harald Gall
Les Gasser
Daniel German

James Herbsleb
Katsuro Inoue
\ Philip Johnson
L S Dewayne Perry
W— /4

Andreas Zeller

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University 33

BTl iRR A - 53 4 P el WAS/)

I 3 HeY i

7 /I”"ﬁﬁt%l’qﬁ FE— B MROREE, BRKEL, UITLYRET
ﬁﬁit@ﬂ"j FIETH IL-1R#ELE

PostgreS0

»
»

25.0% 3,500,000
eeeeeeeee 7 3,000,000
Struts 20.0% T
% m b 2,500,000
‘dﬁ.\ 15.0% 1 2000000
10.0% o= ---1 1,500,000
il 1 1000000
° w0 8T L . [[g
PERL Y 1 500,000
MySCl 00% ‘gEeiiieeesesssyassaaazennaa: 0
version

HEH R, X MEE TOoeRRE, EEBRHA

BB GED DD
SaY ey

aA—HE) T« FIREHEIE ANILT Y=L HALRSAY

oplod 000000000000
(1) AR DK AEE e, e o
= (UTRTTZ A ' =
)» ’\U)ETﬁﬁ — =
= E—
e — ar 3

BFEHN H F 77U

(2)Aﬁﬁb / ThT, e

i

¥k —
..... == —

(5)F0¥ I+DRE

34

S o £ -
BRIOLKRIMDOIRST

2P ERICHZ /77T REDEH

codeBeamer

Forge JavaForge o Cloud
GitHub :GITGO A '
* PberliOS '® 3%, Software Heritage

Entdecke Open Source GitLab.com @ '*\1$t g
Y source {2 project
SEUL . org CodePlex »* projec
Google i
y (\ Developers m
OoOwWwz=2 O Bitbucket othdebian..,

N ossmpEpm——

? Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University 35

ICSE’1 2 Zurich, Switzeriand

Where Does This Code Come from and Where Does It Go?
- Integrated Code History Tracker for Open Source Systems -

Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe
Osaka University
Osaka, Japan
{inoue, peixia, y-manabe}@ist.osaka-u.ac.jp

Abstract—When we reuse a code fragment in an open source
system, it is very important to know the history of the code,
such as the code origin and evolution. In this paper, we propose
an integrated approach to code history tracking for open source
repositories. This approach takes a query code fragment as
its input, and returns the code fragments containing the code
clones with the query code. It utilizes pubhcly avallable code
search engines as external resources
have designed and implemented a
Ichi Tracker. Using Ichi Tracker, we |
studies. These case studles show the auciowis anu uisvvnucus

Y L M D | P Y e

19 citations

Current software engineering tools do not provide suf-
ficient support to explore code history. To know the code
origin, we have to specify project names and/or URLSs. Also,
to know the code evolution, we have to understand the
interrelations of open source projects.

Code search engines such as Google Code Search [10]
>ry useful tools to explore open source
rigin and evolution of code. However,
engines only allows to get keywords

andlar Anda attethiiton oa {hote trmmatife ond $hatr vof1 1m0t

Google

Scholar

B =S
N1 AT

JHEEER L
2017 LR
2016 FEL{E#E
2013 L
JBEEE...

BEMS TANREZ
BIEICEREZ
TRTDEE

3FE & BFRBEOR—
JEBRR

v B ESHD
vV 5B ESHS

75— &%

"code clone" v “

#9 3,440 1 (0.13 #)

CCFinder: a multilinguistic token-based code clone detection system for large [PDF] osaka-u.ac.jp

scale source code Find it @Osaka University
T Kamiya, S Kusumoto, K Inoue - IEEE Transactions on ..., 2002 - ieeexplore.ieee.org

Abstract: A code clone is a code portion in source files that is identical or similar to another.

Since code clones are believed to reduce the maintainability of software, several code clone

detection techniques and tools have been proposed. This paper proposes a new clone

3|fH5T 1378 BJEEE £ 14/—¥3> Webof Science: 397 3| {REEH

HTML) Comparison and evaluation of code clone detection techniques and tools: [HTML] sciencedirect.com

Code Clonelc B89 2 M MR

CK Roy, JR Cordy,
Over the last decad
proposed. In this pa
state-of-the-art in clg
5|7 630 BIEXR

An empirical st
M Kim, V Sazawal,
ABSTRACT Ithas b
eliminating clones b|
the validity of this ag
ST 507 BOEL

Very-large scal
using distribute
S Livieri, Y Higo, M
Abstract The increa
explore a distributeg
distributed approac
5| 153 BIERS

A mutation/inje
detection tools
CK Roy, JR Cordy -
Abstract: In recent
proposed. While sol
these tools, very littl
51T 115 BEX

Gemini: Mainte|
Y Ueda, T Kamiya,
Abstract: Maintainin - - %9 -=-959 -
scale becomes largg 11~15

software maintenan

SIFT 102 BIECHE . ST

Index-based code clone detection: incremental, distributed, scalable [PDF] semanticscholar.org

B MHiimmel E lhiernene | Hainemann - (1ICOSMY 2010 IEEE 27010 - iccovnlore icos orey i d 28 720 % om boom 1 Lomie som e tbs s

37

RURVEHERLUE
Tl

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

38

Multi-Project Software Engineering

Katsuro Inoue "*, Pankaj K. Garg ¥,
Hajimu Iida'f, Kenichi Matsumoto '"*, Koji Torii *

¥ Graduate School of Information Science and Technolo Osaka Umve
1ICSEC e "
, 1 gale Avenue, Sulte 201

and Technology, Nara 630- 0192 Japan
are Engineering) Project, Senri, O
-u.ac.jp, garg@zeesource n‘t
atumoto, torii } @is. alst-na

it Nara Institute of Scie
*EASE (Empmcal Appro,

e‘ Abstract

In various fields of computer science, rapidly grow-
ing hardware power, such as high-speed network, high-
performance CPU, huge disk capacity, and large memory
space, has been fruitfully harnessed. Examples of such
usage are large scale data and web mining, grid comput-
ing, and multimedia environments. We propose that such
rich hardware can also catapult software engineering to
the next level. Huge amounts of software engineering data
can be systematically collected and organized from tens of
thousands of projects inside organizations, or from outside
an organization through the Internet. The collected data

0% 8

useful Tor software engineering. A unique feature of soft-
ware products, however, is that the end product has virtu-
ally no physical manifestation. Hence, composing or taking
apart a software product has virtually no cost implications.
As aresult, software component reuse is a common practice
for code sharing among multiple projects.

We posit that “sharing” among software projects can be
extended beyond code or component sharing to more and
varied kinds of “knowledge” sharing. Such sharing can be
achieved using what we call multi-project software engi-
neering. Instead of narrowly engineering a product, or a
product family, an organization can undertake the responsi-
bility and benefits of engineering a large number of projects

FSE°14 TSE°]14 ICSE’IS

siecifeesione

J. EMSE’I 1‘

el

dvisories on

|

REEREITKE

Google-guava (NR1)

!

|
e .
90- ‘ S 8 o versions
EX RIS '
Kt 33 e « L(NR1,v16.0.1)
—60- | Tl ./
J ’

.. L(NR1,v18.0)

s
.
s
l
|

o

|

il ™
)
-

2014-07 -
2015-01+
2015-07 -
2016-01-

pauvtliTo uviia Uillix u-pm—l?‘y‘

A sentence-matching method for automatic license
identification of source code files

ICSE 2010 Paper Notification [30] =ErL+

Prem Devanbu and Sebastian Uchitel <icse2010-papers-chairs@borbala.com>
A To dmg, y-manabe, inoue, icse2010-paper. |~

Dear Daniel, Yuki and Katsuro

een you that your paper,

has Thanks for your submission to ICSE 2010. W @ have to inform

is 1 "A sentence-matching method for automatic license identification of source code

alg files"

for een accepted for inclusion in the conference program. The

speé
source code files of Debian that highlight interesting facts
about the manner in which licenses are used by FOSS.

1. INTRODUCTION

Free and Open Source Software (FOSS) has become an
important source of reusable code [19]. To be able to reuse
a FOSS component an application (proprietary or FOSS)

ahn1lld caticfr all +he reailiremente and ~coanditiane +hat +hoe

One of the major challenges of intellectual property clear-
ance is to identify the license under which a FOSS compo-
nent, and each of its files, is made available. This is due
to several factors: 1) there is a vast number of open source
licenses, some approved by the Open Source Initiative (cur-
rently 65), and many more that are not—Table 1 shows
some frequent FOSS licenses and their abbreviations, as used
in this paper; 2) a FOSS product might be made available
under several licenses. 3) different versions of a FOSS com-

=0.269

0.269 < HO¥TE < 0.474

RQ1: ¥5V/7h7x7IFEWMREEF?

44

113

XBH% ?

iR AlcE>TERIINSVS

- B

. Ri
. B
.

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

45

SEMt RIS EHHD DD ?

impact fleld’s main
g dedicated improve g
affordable
quicker Sluﬂv knowledge s
viewns DFECISION = z
ubli g
money Em. i -
defined 5 =

paradigm International
maintenance
generic necessarily
tlelﬂ last
Saniies n T engineers
much & N
=
looks & sulmmu
engineer gy =
approach r—
mleclunm englneerlng

tool _ conforms
- approaches

licensing S
actually

ﬂnl ds snmclam

lcconlln.

build
lack &

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

arXiv.org > c¢s > arXiv:1707.01162

Search or Article ID inside arXiv All papers

(Help | Advanced search)

Broaden your search using Semantic Scholar

Computer Science > Digital Libraries Download:

Publish or impoverish: An investigation of the » PDF only
monetary reward system of science in China Current browse context:
(1999-2016) cs.DL |

Table 5 Comparison of Average Amount of Cash Awards* for a Paper Published in Selected Journals
(2008-2016)

2008 2009 2010 2011 2012 2013 2014 2015 2016

Nature, Science $26,212 $26,006 $25,781 $25,365 $33,990 536,658 $38,908 $43,783 $43,783
PNAS $3,156 $3,025 $3,353 S$3,443 $3,664 $3,619 $3,751 $3,513 $3,513
PLOS One $1,096 $1,086 $1,035 $994 $991 $915 $941 $984 $984
MIS Quarterly $2,613 82,570 $2,553 82,654 $2,876 $2,861 $2,992 $2,938 $2,938
JASIST $1,737 $1,758 $1,741 51,887 82,066 $2,303 $2,435 $2,488 52,488
Journal of

$1,408 $1,408

Documentation >1,082 »1,087 . 1 . $ 1 00 ? »1,329
Library Hi Tech $781 $775 2. $1,000? 768 $795 $783 $783
LIBRI $650 $644 3. $10,0007? 509 $517 $484 $484

* All the amounts are full amount (in USD) 4 %hl»‘lJ: o)

Submission history Exb: EBOFHIFINSS,600

From: Fei Shu [view email]
[vl] Tue, 4 Jul 2017 21:46:35 GMT (1131kb)

@

SERDN L F+—Dfl

Gail Muphy TasSki®p

2007 331

Prof. of UBC & Chief Scientist and Co-Founder of Tasktop

48

SEftRTHETESDH ?

- REREFRBORTLHRIEL S 5

- Ao2—2vb. ATHIRELE. BSHET—LRBEL
- LU EB<SES BV EF

- ERTHRREEThTLS

- 2EOBLI3. SEELTHER

- REEEANEBMELLRT
- RARTRRENEBET/O0E—2a &R

49

A Case

2017 showing all 27 records
mGn B & Marouane Kessentini, Usman Mansoor, Man mer, , K : refine by search term
— — Search-based detection of model level change: (
~ (2017) refine by type
— — . _ . .) ; i 2 Journal Articles (only
W [j10] &, Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M. German, Katsuro @ Conference and Workshop Papers (only)
Inoue: torship (only)
A 2 I Search-based software library n ion using multi-objecti imizati mal Publications (only
[) — Information & Software Technology 83: 55-75 (2017) t select
>3 8y ectall | de al
m gy E & Ali Ouni, Marouane Kessentini, Mel O Cinnéide, Houari A. Sahraoui, Kalyanmoy Deb, Katsuro refine by coauthor
Inoue: N entini
) MORE: A multi-objective refactoring recommendation approach to introducing design
[N patterns and fixing code smells. Journal of Software: Evolution and Process 29(5) (2017)
0 0 Wcia E & Raula Gaikovina Kula, Daniel M. German, Takashi Ishio, Ali Ouni, Katsuro Inoue:
An exploratory study on library aging by menitoring client usage in a software ecosystem. .
. ssistant Pro niv '
L] L] -
M [c13] & Naoya Ujihara, Ali Ouni, Takashi Ishio, Katsuro Inoue:
(] (] c-JRefRec: Change-based identification of Move Method refactoring opportunities. SANER
* 1 Assistant Prof. Univ. Quebec
L4 L 2016
(] min B2 Mohamed Aymen Saied, Ali Ouni, Houari A. Sahraoui, Raula Gaikovina Kula, Katsuro |
Lo:
I n o n re a Automated Inference of Software Library Usage Patterns. CORR abs/1612.0

m s E & Ali Ouni, Ma ymoy Deb:
Multi-Criteria Code Refactoring Using Search-Based Software Engineering: An Industrial
Case Study. ACM Trar fethodol. 25(3): 23:1-23:53 (2016)

ane Kessentini, Houari A. Sahraoui, Katsuro

v. Eng. N

2] B & Ali Ouni, Raula Gaikovina Kula, Katsuro Inoue:
Search-Based Peer Reviewers Recommendation in Modern Code Review. ICSME 20
377

o) E 4 Hanzhang Wang, Marouane Kessentini, Ali Ouni:
Prediction of Web Services Evolution. ICSOC 2016: 282-297

W cio] E & Hanzhang Wang, Marouane Kessentini, Ali Ouni:
Bi-level Identification of Web Service Defects. ICSOC 2016: 352-368

| (9 E & Ali Ouni, Zou Inoue, Makram Soui
SIM: An Automated Approach to Improve Web Service Interface Modularization. ICWS 2016: 91-98

Salem, Kats!

g EL Hanzhang Wang, Ali Ouni, Marouane Kessentini, Bruce R. Maxim, William I. Grosky:
Identification of Web Service Refactoring Opportunities as a Multi-objective Problem. ICWS 2016: 586-593

| (7] J Norihiro Yoshida, Tsubasa Saika, Eunjong Choi, Ali Ouni, Katsuro Inoue:
Revisiting the relationship between code smells and refactoring. ICPC 2016: 1-4
W [c6] g, Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, Ali Ouni:
Recommending relevant classes for bug reports using multi-objective search. ASE 2016: 286-295

e 34 Ali Ouni, M. ne Kessentini, Mel O Cinnéide:
Proceedings of the 1st International Workshop on Refactoring, 2016, Si , Singapore, 4,2016.
ACM 2016, ISBN 978-1-4503-4509-5 [conte

2015
| 7 2 O Ali Ouni, Marouane Kessentini, Houari A. Sahraoui, Katsuro Inoue, Mohamed Salah Hamdi:
Improving multi-objective code-smells correction using development history. Journal stems and Software 105: 18-39 (2015)
m s E 32 Ali Ouni, Marouane Kessentini, Slim Bechikh, Houari A. Sahraoui:
Prioritizing code-smells correction tasks using chemical reaction optimization. Software Quality Journal 23(2): 323-361 (2015)
| (5] = & Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice reu, Slim Bechikh,

Many-Objective Software Remodularization Using NSGA-III. A Trans. v 3

[c5] 2 Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Katsuro Inoue:

. Journals: TSE(1), TOSEM(2), TSC(1), ASE(1), EMSE(1), JSS(2), IST(1)
. Conferences: ASE(1), FSE(1), GECCO(2), ICSME(2), ICWS(2), ICSOC(2) |-

W (11 B 8 ® < AliOuni, Marouane Kessentini, Houari A. Sahraoui, Mounir Boukadoum:
Maintainability defects detection and correction: a multi-objective approach. Autom. Softw. Eng. 20(1):

7-79 (2013)

- E 0 Al Quni_Marauana Kassantini_Houari &_Sahraoui:

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University 50

A 3L . B L i 3

- KEPHRBRBICE>TIIRMNDRERISHA
- EESURVEFRICSBORYRERERDSNZTL Y v—IEK
- EROAVULTE..

- RUVMSAR
ICSE > FSE > ASE > --- > ASPEC > --- ?
TSE > TOSEM > EMSE > --- > JSS > -+ ?
Tire 1 : TSE, ICSE, --- Tire 2: --- ?

- 53
- FH3CE vs. B ¥
- H-index ?
H-index®xDA : xEILl LSBEhTUWSmXHXELI LHS

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University 51

Top Publications (English)

Categories > Engineering & Computer Science > Software Systems ~

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Publication

International Conference on Software Engineering

IEEE Transactions on Software Engineering

Journal of Systems and Software

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)

Information and Software Technology

ACM SIGSOFT International Symposium on Foundations of Software Engineering

Mining Software Repositories

|IEEE Software

ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP)

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA)

Empirical Software Engineering

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)

arXiv Software Engineering (cs.SE)

International Symposium on Software Testing and Analysis

IEEE/ACM International Conference on Automated Software Engineering (ASE)

Software & Systems Modeling

IEEE International Conference on Software Maintenance

IEEE International Conference on Software Testing, Verification and Validation (ICST)

arXiv Programming Languages (cs.PL)

h5-index

h5-median

91

80

73

67

68

68

64

57

54

55

51

48

55

50

50

44

43

41

41

40

52

19.

20.

21.

60.

61.

62.

63.

64.

65.

66.

67.

Top Publications

Publication

TARZRWNE B2 (BFEIF)

EXFRMNEE B (BN - TRILF—EPIEE)

B EREEZSRITHREE

MR ERREE
——
BRREFIMSRFEE

e B OEOTr 4 B4 [ab T A

B BEBEFRAXE D
I
BRFRANES D (ERISHLIEL)
BPRUERE

[E¥ P2M FREE

AYEa2—9 YIThIx7
ATHERELERRRIE
REEBFHR

MEFE

IARPERE G (BF)
SRS

BRIZIv—FI

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

B

h5-index

oo (-] oo

I~

Japanese ~

h5-median

16
15
16
15

12

15

53

& Vim e E<ICIE !

‘k; YINIITIVO=FYI T URI) L2011
zo1 1 [PSJ/SIGSE Software Engineering Symposium (SES2011)

AR ZEIE I mXDEETS
~ RFREIAS NCER ~

TUNKRFARFE RS A5 LIEHRBIF AT
BEHK 1l

« BMFEXEDSES-2011DF2—MI7N
* RLiAXBLDICHELEIE, 2EIENShTIVS !

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University 54

B&oEfElTEtEo Ve

c WAWALPCRIF12—O>TE=
- |CSE (8), FSE/ESEC (3), MSR (9), ...
- TSE Associate Editor, J. EMSE Editorial Board, ...

- E)R TR DR

B & i
MR D 7l $ 5 L
B L X
A
—

T—?
Department of Computer Science, 6raduate School of Information Science and Technology, Osaka Unive

HEOBENER..

@) IEEE TRANSACTIONS ON

SOFTWARE
ENGINEERING

T

\

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

56

VIV %, OSSEEH. EFEIS

—LoMIL7-RFEICIE FRRHHS

—RBILHRE, BREDSEHDEHB LIS

—fEO>THSADETICE. AZa=Fr—PattDfFaL. B
@BhwiR, BKEIAAM

+L\o7‘._ME:binét EThexlcmXBEPTLY
+HEARBELETESMICEDS
+OSS:l::z:v‘-q"C(D..MI]I=IEF M E

+HELRE. BREEHDRA. REORERRICELS

AI

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

57

58

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

59

e =]

s

XB7=HDLDH D)

. TRV - 5 kg

. EFER-V-IVFR

. THER

. AREHT

. BEIRME(EFE. BERRER)

. KPZREIRIE

1.1 7= &U

£ 4 i SR

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

61

1.2 7= BUDEE

- FHRMK
-HBICKDIEE vs. BAOEIR - B2sUAEER vs. 12704 B
- FDEDN—R, HILYEE - EXMERE. 7NdVXL
- BIZICWITTOHORFX
- REBIN-TDFT—2 - XM)O R, FRIRIE
- BON—ARRDOFHER -9 LAF1A
- fil=bL R, =X D% - 70t £M1EH
- HEEFEOR{X
- IN—T%FE5|TEIBENNET—< - v1=%. OSSEE
- ZFWMNICIRSFNHDT—~ - O—-k/0-2, O—-RiR%R

-2l NIMNDHBDT— - J—-koo-—- 4k E

1.3 M ORI

- RWTF—7 g ReAIDLL

HADSESHLVMEFRICHER

- DWWMERRICIIIS TR A2 EES, XX 2SRl ?

- SASDLVLVERIER ?

ALD
HIR

63

ALD
HIR

1.4 X DFEREIR(TND2)

IR fi]

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technol Osaka Universi

64

DB

Lang.

SE

Al

1.5 thBHADS A

Z
/\ \

HaON—AZzEHDD., filly
TF—2PRHLEAEZHLTHED !

t

| nformation Science and Technology, Osaka University

65

2.1 EFEGOERM

- V77 RS, PR, BRRANDLTOFE?
- BLWZO0470RHE. BOYATLKE. BURRYME--

- BRABRELS GV EHROBEIBESLL

- EFRIRERRTIET. BREZES

66

KF

2.2 KFERREET N

RFEEHSEDEZETI

E%'M@E\ Bﬁs :_x

ARER, >—X

>
< L
xR,

RT—4%,
S % #0120

=P

KFEmbe fHe

67

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

2.3)77 THOHERHE

=]
r ¥
EEEEEEE
lll|llllt%n
ol e 82 SR
MR, At
A% JI7MNITP TSR EE ST

68

2.4 EEFEIBEDX) Y

- DR OFHEBADX)VH
- RO (Z—RX)DRER
- ERRODERE
- REMNEHARFMATES
- X DR DIEAICED
s DUHEEST, BEDEEILESRVLEICHHR

SEfiRIIEDNT Z EFEMES Y
EVNHATEFEEPCOTHELD !

PS8R

Tao Xie, Planning and Executing Practice-Impactful Research,
Chinese Computer Federation Software Engineering Special

Interest Group Young Researcher Forum, Aug. 2017.
https:/ /www.slideshare.net/taoxiease/planning—and-executing-
practiceimpactful-research

¢ Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

69

2.5 J—IVEI%. OSSEB

- BEFEIEN—DO DR

- =V FRLL

- OA—KHENE, PLTF1T7HERIRIND

- A—H=HhDT, RALHER. 71—RINVIHRIHICED
- A—Y—HIBABETDNY/ VDRI DRSS BEEHH D

- —=IVEFIEFLL

- i, ARMERTORENHBE
- HEe<EPRMENMI TR —X. ETETICRICE DL
+ YRTLRRRIICES (?)

- RFORRPEF)T M BICREL SN S
s ARTAT 17 DEREGFFMTT &
B, WXICIEEL TWANWA LT -4t yhRREND

TOHZENSEALEAOSSR®Y—IVD)
BAMIBATIILL !

| nformation Science and Technology, Osaka Universi

70

3.1 70 x/MFEHES

| 671 B
HE26DIATEHEHE. EVCVASEA(KE. AR#EEE. KR)
FIRFBIITHOTH?

U o)
(50
120,000
101,200
100,000
80,000 71,900
TS5 ()
55,00
60,000 SRARME S (T4 + L)
FIRERFHHR)
40,000 (R4RE)
19,200
20,000 26,200 6,700
131200 16,600 1(211338 (28.6%) (26.4%)
. aon) | (21.4%)
" 7 H28 (£F)

FHROEVEFE>IN
? - KRB REHR /O, FEHEEND

Software Engineering Laboratory, Department of Computer Science, 6raduate School of Information Science and Technology, Osaka University

71

3.2 7021/ FRER(TN2)

En7O0z7ME6XHEE)

- WAWAT7OER, FERESICHKIHASL, FEMEHEELL
- fELL, PR THELEEZ IS

- AR OFERIEXRE., FEHS

(MR I1-7] BFHFERTRGETEOHER

? Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

72

3.3 70/ FHES(EN])

ERUIEFHEREMICESH?

- BRIRR
- B8, FEDER

3=
- HA. FEORRIKE

- AR
- BEXREFEADYF—b
- BRAZFTERFJLRANVER

73

4 RRELHE

- BBEERRTIESICETL Y +—18EK
- REHHBOER
- HEHOEE., RENEEKIL
- g}fﬁm#ibﬁﬂﬁb\#éo BOISICEMEHDTHMELZEE

AW

- BJi3BI7A—MMIBRTFE2REI<LD
- UNMLSEQBM(I 7227 0OmE. £EHEHITS)N
T. RiliZEERHBULLANT Y TZIED B, ELVSDIE. REFD
FALFER — David NotkinfsEDER
- REDOEFETACELICEI > TR 2B TEA(FICKE
Be). ERARDAZEREBIE. Akl iR E

5.1 EIRRML(HZE)

 BRICEREROAFAFEORD, BICHLIBEYED
W
B REEEOHN

- NIRBIICEFENEM (H LF¥I1/4)
— BOZETREVH..
- BREREICFRBRLIHS
- EROBVERIESLVLWFEESVD
- E3THEVELELS, LIES<KRADSLL
- BRAZEANDRE BINREHTF
- fAHER. HRE. XF. BFEOBRLEOHEELS...
- IBEEFFHPAR-ZADFrNERLEHS, HEICZANGEX

75

5.2 ERXME(EIRRFRHZ)

TERLETRTIEPLL
- ARDT7 7 T71ET1F L
- REOFLE(HFRNHBSVHEH, KEFF9M L)
- FEFORH
- LWL, PIgESIH 2% ELS<TAYVS DL

- B OMFEEMBTII LA LA R TIC<LY

- FRMUOAETL. WA

- B BRSOFRZERIZRIT. BBSOICED
- BAEDHICRNWBANBRLFRSE, RIFEEAE

- BE. KTV RELEDNEVER
- REEHRHRIEAFICLEOLLY
- Y ER—MRUDWNMKRFETE—BFEOTNBIDFLEFE)

- BEORVHARITEE

@

- ED2—RBRAH 2D, CHoBIEARERBICGEDNTS

| nformation Science and Technol Osaka Universi

76

6. THRIREDNKFZI)ESIRIE

- BEROKE. FHICEILKFEELULVIKR

- BEBRXMASOBEDHIRICEZRAMIE. FEOAVH

- XEEZEORE/ODIIMDTZIEETDEEE

- AOEHMEEE. ARISAANDOELLVW IR LGEICEIBRI LR
- BT 17 ADEIL

- REFF 7ML RRENTOVIIMESEA

- EFLEREESOI-ODNANALIE(ERE(HE. TAN/MNE)
- REWEDLHNDFEALE. AE

- 70N—BEDRBANDT Y1

C ZAVSEBETERVTHETESH ?

- HEBEBLL | BHIBERVTIESICRAZA
HTIEAE ?

- TEBEFBEVSBICERMICHE

- Bh 4L, —RHIM. BRTSHIE

77

RQDFEEH

-RQ1: X5V 7h7x7 ITFERRER?
- AMCEOTHEER A ESH . SEEFRSFTEARK
- ERFEHEBHICERLTHERZHRASLZ

- RQ2: ESThIEHR
- No Silver Bullet !
- ﬁ#tg):ﬁ: 1z

y)\ 007

A I INTPDKREEILARF
s ICEHEEEEEZHAIR, &
ARV ZREV. BBEICHIRATENE:E
FUEDOHERICSETS

N'))—ABLAELUIRALES

L<EDNTBZELRLE | HiMiELL.
o 1FIOAT—RICTELL | BRNFELL,

78

FRICMITT(EDNT)

PRIINLGESa PERIFED

- FTFE TN LRAREEHRSNSHOTOMHR

- HRIEE, WY II7VOMRELEVE(TOOHREELT)
- LALENETTIIBEERSR -

- BROIRREOELZBICFIVY

- IN=R2xITF7 ZXYNI—9
- B3 HAEAL GPU, 257K, 0S.)

- SERS— MGV ETLRRNICEZAL TS, XSLTL—H2R

P

W—HEFTERT—2IcELZIFD, =&alE
- 7095 L0582 FE FEE i

- AFDME-7=27 095 L0ORE

-1/ \70)7BQE§M*IE

‘ -
9’--\’/Z¥J5E<‘:FE\97‘:_':>£U J—AEIRALELD |
Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Sci

mation Science and Technology, Osaka University

79

FRICMITT(EDN2)

V7b 7 TEEN-RICT)7Mox7 100701 !

- ERDVIMNIITIRDERTS

- mEOF/W/ 77 @SR S5

- FYHERHUE. EERICHL T, B<TOFENWY 777229 3El
. (EERDINFR

+ V787 IISE/ - Y—ERNMMiEZEERLT 38 NEFE

- BNHIRBICEIZEN WA AE—FER. mBARZ0DR
- FHRIB LV, ESRARDRATFLLANNDOHFI=ET AT 17 %,)71
7IcEELATA
- Y7hIIFICET BE SR AN, £EH. RiTH--

- TRADFFIE) 7h7x7 ITHETY |

P

- B THS O ER>TLLD ?
YI7b 27 ND7AELTES RAX
SATLDA/N—2as D35S |

| nformation Science and Technology, Osaka University

80

HIHESTSTWVWELE

